Modularity of nearly ordinary 2-adic residually dihedral Galois representations

被引:8
作者
Allen, Patrick B. [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
FORMS;
D O I
10.1112/S0010437X1300780X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove modularity of some two-dimensional, 2-adic Galois representations over a totally real field that are nearly ordinary at all places above 2 and that are residually dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families, together with the 2-adic patching method of Khare and Wintenberger. As an application we deduce modularity of some elliptic curves over totally real fields that have good ordinary or multiplicative reduction at places above 2.
引用
收藏
页码:1235 / 1346
页数:112
相关论文
共 41 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]  
[Anonymous], 2007, CURRENT DEV MATH
[3]  
[Anonymous], 1975, GRADUATE TEXTS MATH
[4]  
Artin E., 1968, CLASS FIELD THEORY
[5]   MOTIVES FOR HILBERT MODULAR-FORMS [J].
BLASIUS, D ;
ROGAWSKI, JD .
INVENTIONES MATHEMATICAE, 1993, 114 (01) :55-87
[6]  
Bourbaki N., 1962, ALGEBRE COMMUTATIVE
[7]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[8]  
Carayol H., 1994, Contemp. Math., V165, P213
[9]  
Darmon H., 1995, CURRENT DEV MATH, P1
[10]  
Dickinson M, 2001, DUKE MATH J, V109, P319, DOI 10.1215/dmj/1000313965