Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin -: Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes

被引:150
作者
Andersen, MD
Busk, PK
Svendsen, I
Moller, BL
机构
[1] Royal Vet & Agr Univ, Plant Biochem Lab, Dept Plant Biol, DK-1871 Frederiksberg C, Denmark
[2] Royal Vet & Agr Univ, Ctr Mol Plant Physiol PlaCe, DK-1871 Frederiksberg C, Denmark
[3] Carlsberg Lab, Dept Chem, DK-2500 Copenhagen, Denmark
关键词
D O I
10.1074/jbc.275.3.1966
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first committed steps in the biosynthesis of the two cyanogenic glucosides linamarin and lotaustralin in cassava are the conversion of L-valine and L-isoleucine, respectively, to the corresponding oximes, Two full-length cDNA clones that encode cytochromes P-450 catalyzing these reactions have been isolated, The two cassava cytochromes P-450 are 85% identical, share 54% sequence identity to CYP79A1 from sorghum, and have been assigned CYP79D1 and CYP79D2. Functional expression has been achieved using the methylotrophic yeast, Pichia pastoris, The amount of CYP79D1 isolated from 1 liter of P. pastoris culture exceeds the amounts that putatively could be isolated from 22,000 grown-up cassava plants. Each cytochrome P-450 metabolizes L-valine as well as L-isoleucine consistent with the cooccurrence of linamarin and lotaustralin in cassava. CYP79D1 was isolated from P, pastoris, Reconstitution in lipid micelles showed that CYP79D1 has a higher k(c) value with L-valine as substrate than with L-isoleucine, which is consistent with linamarin being the major cyanogenic glucoside in cassava, Both CYP79D1 and CYP79D2 are present in the genome of cassava cultivar MCol22 in agreement with cassava being allotetraploid, CYP79D1 and CYP79D2 are actively transcribed, and production of acyanogenic cassava plants would therefore require down-regulation of both genes.
引用
收藏
页码:1966 / 1975
页数:10
相关论文
共 63 条
[1]  
ANDERSEN MD, 1988, PROTEIN EXPRES PURIF, V13, P355
[2]   The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates [J].
Bak, S ;
Nielsen, HL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 38 (05) :725-734
[3]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[4]   EXPRESSION AND ENZYMATIC-ACTIVITY OF RECOMBINANT CYTOCHROME-P450 17-ALPHA-HYDROXYLASE IN ESCHERICHIA-COLI [J].
BARNES, HJ ;
ARLOTTO, MP ;
WATERMAN, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5597-5601
[5]  
BENNETT R, 1995, PLANTA, V196, P239, DOI 10.1007/BF00201380
[6]   Distribution and activity of microsomal NADPH-dependent monooxygenases and amino acid decarboxylases in cruciferous and non-cruciferous plants, and their relationship to foliar glucosinolate content [J].
Bennett, RN ;
Kiddle, G ;
Hick, AJ ;
Dawson, GW ;
Wallsgrove, RM .
PLANT CELL AND ENVIRONMENT, 1996, 19 (07) :801-812
[7]   Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard - A biochemical anomaly [J].
Bennett, RN ;
Kiddle, G ;
Wallsgrove, RM .
PLANT PHYSIOLOGY, 1997, 114 (04) :1283-1291
[8]   PURIFICATION AND CHARACTERIZATION OF THE NADPH-CYTOCHROME-P-450 (CYTOCHROME-C) REDUCTASE FROM HIGHER-PLANT MICROSOMAL FRACTION [J].
BENVENISTE, I ;
GABRIAC, B ;
DURST, F .
BIOCHEMICAL JOURNAL, 1986, 235 (02) :365-373
[9]  
BOKANGA M, 1994, ACTA HORTIC, V375, P1
[10]  
BOKANGA M, 1992, P 1 INT SCI M CASS B, P418