The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle
被引:41
|
作者:
Zolnerciks, Joseph K.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, EnglandQueen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
Zolnerciks, Joseph K.
[1
]
Akkaya, Begum G.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, EnglandQueen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
Akkaya, Begum G.
[1
]
Snippe, Marjolein
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, EnglandQueen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
Snippe, Marjolein
[1
]
Chiba, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Vienna, Inst Med Chem, Vienna, AustriaQueen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
Chiba, Peter
[2
]
论文数: 引用数:
h-index:
机构:
Seelig, Anna
[3
]
Linton, Kenneth J.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, EnglandQueen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
Linton, Kenneth J.
[1
]
机构:
[1] Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
[2] Med Univ Vienna, Inst Med Chem, Vienna, Austria
ABC transporter molecular mechanism;
drug efflux pump;
MDR1;
membrane protein;
primary active transport;
P-GLYCOPROTEIN REVEALS;
CASSETTE TRANSPORTER;
CRYSTAL-STRUCTURE;
MALTOSE TRANSPORTER;
MONOCLONAL-ANTIBODY;
GLUTAMATE RESIDUES;
ALTERNATING ACCESS;
PLASMA-MEMBRANE;
HIGH-AFFINITY;
LIVING CELLS;
D O I:
10.1096/fj.13-245639
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
For a primary active pump, such as the human ATP-binding-cassette (ABC) transporter ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism, but is poorly understood at the biochemical level. Structure data suggest that signals are transduced through intracellular loops of the TMDs that slot into grooves on the NBDs. At the base of these grooves is the Q loop. We therefore mutated the eponymous glutamine in one or both NBD Q loops and measured the effect on conformation and function by using a conformation-sensitive antibody (UIC2) and a fluorescent drug (Bodipy-verapamil), respectively. We showed that the double mutant is trapped in the inward-open state, which binds the drug, but cannot couple to the ATPase cycle. Our data also describe marked redundancy within the transport mechanism, because single-Q-loop mutants are functional for Bodipy-verapamil transport. This result allowed us to elucidate transduction pathways from twin drug-binding cavities to the Q loops using point mutations to favor one cavity over the other. Together, the data show that the Q loop is the central flexion point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.