Sharp L2 log L inequalities for the Haar system and martingale transforms

被引:1
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
关键词
Haar system; Martingale; Square function; Best constants;
D O I
10.1016/j.spl.2014.07.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (h(n))(n >= 0) be the Haar system of functions on [0, 1]. The paper contains the proof of the estimate integral(1)(0) vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k)vertical bar(2) log vertical bar Sigma(n)(k=0) epsilon(k)alpha(k)h(k vertical bar) ds <= integral(1)(0) vertical bar Sigma(n)(k=0) alpha(k)h(k)vertical bar(2) log vertical bar e(2) Sigma(n)(k=0) alpha(k)h(k) vertical bar ds, for n = 0, 1, 2,.... Here (a(n))(n >= 0) is an arbitrary sequence with values in a given Hilbert space H and (epsilon(n))(n >= 0) is a sequence of signs. The constant e(2) appearing on the right is shown to be the best possible. This result is generalized to the sharp inequality E vertical bar g(n)vertical bar(2) log vertical bar g(n)vertical bar <= E vertical bar f(n)vertical bar(2) log(e(2)vertical bar fn vertical bar), n = 0, 1, 2,..., where (f(n))(n >= 0) is an arbitrary martingale with values in H and (g(n))(n >= 0) is its transform by a predictable sequence with values in (-1, 1). As an application, we obtain the two-sided bound for the martingale square function S(f): E vertical bar f(n)vertical bar(2) log(e(-2) vertical bar f(n)vertical bar) <= ESn2 (f) log S-n(f) E vertical bar f(n)vertical bar(2) log(e(2)vertical bar f(n)vertical bar), n = 0, 1, 2,.... (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 13 条
[1]  
[Anonymous], 1937, ANN SOC POL MATH
[2]   MARTINGALE TRANSFORMS [J].
BURKHOLD.DL .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1494-&
[3]   BOUNDARY-VALUE-PROBLEMS AND SHARP INEQUALITIES FOR MARTINGALE TRANSFORMS [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1984, 12 (03) :647-702
[4]  
BURKHOLDER DL, 1991, LECT NOTES MATH, V1464, P2
[5]   AN ELEMENTARY PROOF OF AN INEQUALITY OF PALEY,R.E.A.C. [J].
BURKHOLDER, DL .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (SEP) :474-478
[7]  
BURKHOLDER DL, 1986, LECT NOTES MATH, V1206, P61
[8]  
Maurey B, 1975, SYST HAAR SEM MAUR S
[9]  
Osekowski A., 2012, MONOGRAFIE MATEMATYC, V72
[10]   SHARP LLOGL INEQUALITIES FOR DIFFERENTIALLY SUBORDINATED MARTINGALES AND HARMONIC FUNCTIONS [J].
Osekowski, Adam .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) :745-756