Laser-processed Nanostructures of Metallic Substrates for Surface-Enhanced Raman Spectroscopy

被引:19
作者
Bai, Shi [1 ]
Zhou, Weiping [1 ]
Tao, Chen [1 ]
Oakes, Ken D. [2 ]
Hu, Anming [1 ]
机构
[1] Beijing Univ Technol, Inst Laser Engn, 100 Pingle Yuan, Beijing 100022, Peoples R China
[2] Cape Breton Univ, Dept Biol, Verschuren Ctr, Sydney, NS B1P 6L2, Canada
基金
北京市自然科学基金;
关键词
Enhancement factor; laser interference; laser processing; metal nanostructure; Raman scattering; surface enhancement; PURE AG COLLOIDS; FEMTOSECOND-LASER; SCATTERING SERS; SINGLE-MOLECULE; GOLD NANOPARTICLES; PLASMON RESONANCE; SILVER COLLOIDS; HOT-SPOTS; ABLATION; FABRICATION;
D O I
10.2174/1573413710666140402003435
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is rapidly emerging as a powerful analytical tool for trace analysis of metallic substrates. While innovative numerical applications of SERS have been developed, it is still a challenge to fabricate cost-effective and reproducible metallic substrates for SERS probes. Laser processing, especially using ultrafast pulsed laser, can address this issue owing to their high quality processing. Herein, we investigate critical technical requirements and the latest advancements in laser-processing substrates for SERS, while highlighting several diverse applications. In light of its powerful enhancement of Raman scattering, SERS will remain an exciting research area for highly sensitive, resolved analysis into the foreseeable future.
引用
收藏
页码:486 / 496
页数:11
相关论文
共 112 条
[1]   Large-Area Nanopatterning of Self-Assembled Monolayers of Alkanethiolates by Interferometric Lithography [J].
Adams, J. ;
Tizazu, G. ;
Janusz, Stefan ;
Brueck, S. R. J. ;
Lopez, G. P. ;
Leggett, G. J. .
LANGMUIR, 2010, 26 (16) :13600-13606
[2]   Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy [J].
Agarwal, N. R. ;
Neri, F. ;
Trusso, S. ;
Lucotti, A. ;
Ossi, P. M. .
APPLIED SURFACE SCIENCE, 2012, 258 (23) :9148-9152
[3]   Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets [J].
Amoruso, S ;
Wang, X ;
Altucci, C ;
de Lisio, C ;
Armenante, M ;
Bruzzese, R ;
Velotta, R .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3728-3730
[4]   Fabrication of large-area grating structures through laser ablation [J].
Bekesi, J. ;
Meinertz, J. ;
Ihlemann, J. ;
Simon, P. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 93 (01) :27-31
[5]   Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water [J].
Besner, S. ;
Kabashin, A. V. ;
Meunier, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 88 (02) :269-272
[6]   Femtosecond Laser Synthesis of AuAg Nanoalloys: Photoinduced Oxidation and Ions Release [J].
Besner, Sebastien ;
Meunier, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (23) :10403-10409
[7]   Optical and interferometric lithography - Nanotechnology enablers [J].
Brueck, SRJ .
PROCEEDINGS OF THE IEEE, 2005, 93 (10) :1704-1721
[8]  
Buividas R., 2012, ANN PHYS-BERLIN, V524, P11
[9]   Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes [J].
Canamares, M. V. ;
Garcia-Ramos, J. V. ;
Gomez-Varga, J. D. ;
Domingo, C. ;
Sanchez-Cortes, S. .
LANGMUIR, 2007, 23 (09) :5210-5215
[10]   Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging [J].
Cang, Hu ;
Labno, Anna ;
Lu, Changgui ;
Yin, Xiaobo ;
Liu, Ming ;
Gladden, Christopher ;
Liu, Yongmin ;
Zhang, Xiang .
NATURE, 2011, 469 (7330) :385-+