An entropic analysis of approximate quantum error correction

被引:5
作者
Cafaro, Carlo [1 ,2 ]
van Loock, Peter [2 ]
机构
[1] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
关键词
Entropy; Quantum error correction; Thermodynamics; PHYSICAL LIMITS; INFORMATION; DISTINGUISHABILITY; DEMON;
D O I
10.1016/j.physa.2014.02.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of entropy and the correct application of the Second Law of thermodynamics are essential in order to understand the reason why quantum error correction is thermodynamically possible and no violation of the Second Law occurs during its execution. We report in this work our first steps towards an entropic analysis extended to approximate quantum error correction (QEC). Special emphasis is devoted to the link among quantum state discrimination (QSD), quantum information gain, and quantum error correction in both the exact and approximate QEC scenarios. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 45 条
[21]   Correlated errors in quantum-error corrections [J].
Hwang, Won Young ;
Ahn, Doyeol ;
Hwang, Sung Woo .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (02) :022303-022301
[22]  
JAUCH JM, 1972, HELV PHYS ACTA, V45, P220
[23]  
Neisser U, 1963, Science, V140, P216, DOI 10.1126/science.140.3563.216
[24]   COMPARISON OF QUANTUM AND SEMICLASSICAL RADIATION THEORIES WITH APPLICATION TO BEAM MASER [J].
JAYNES, ET ;
CUMMINGS, FW .
PROCEEDINGS OF THE IEEE, 1963, 51 (01) :89-+
[25]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[26]   Reversing measurement and probabilistic quantum error correction [J].
Koashi, M ;
Ueda, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2598-2601
[27]   IRREVERSIBILITY AND HEAT GENERATION IN THE COMPUTING PROCESS [J].
LANDAUER, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1961, 5 (03) :183-191
[28]   PHYSICAL LIMITS TO QUANTUM FLUX PARAMETRON OPERATION - COMMENT [J].
LANDAUER, R .
PHYSICA C, 1993, 208 (1-2) :205-207
[29]   Approximate quantum error correction can lead to better codes [J].
Leung, DW ;
Nielsen, MA ;
Chuang, IL ;
Yamamoto, Y .
PHYSICAL REVIEW A, 1997, 56 (04) :2567-2573
[30]   Quantum state discrimination: A geometric approach [J].
Markham, Damian ;
Miszczak, Jaroslaw Adam ;
Puchala, Zbigniew ;
Zyczkowski, Karol .
PHYSICAL REVIEW A, 2008, 77 (04)