Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity

被引:35
作者
Di Lecce, Silvia [1 ]
Kornyshev, Alexei A. [1 ]
Urbakh, Michael [2 ,3 ]
Bresme, Fernando [1 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, London W12 0BZ, England
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
room-temperature ionic liquids; electrotunable friction; lubricants; nanotribology; nonequilibrium simulations; nanoconfinement; DOUBLE-LAYER STRUCTURE; ELECTROTUNABLE FRICTION; MOLECULAR-STRUCTURE; TEMPERATURE; SUPERLUBRICITY; LUBRICATION; MECHANISMS; DYNAMICS; LENGTH;
D O I
10.1021/acsnano.0c05043
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electric fields modify the structural and dynamical properties of room temperature ionic liquids (RTILs) providing a physical principle to develop tunable lubrication devices. Using nonequilibrium molecular dynamics atomistic simulations, we investigate the impact of the composition of imidazolium RTILs on the in-plane ordering of ionic layers in nanogaps. We consider imidazolium cations and widely used anions featuring different molecular structures, spherical ([BF4](-)), elongated surfactant-like ([C2SO4](-)), and elongated with a more delocalized charge ([NTf2](-)). The interplay of surface charge, surface polarity, and anion geometry enables the formation of crystal-like structures in [BF4](-) and [NTf2](-) nanofilms, while [C2SO4](-) nanofilms form disordered layers. We study how the ordering of the ionic liquid lubricant in the nanogap affects friction. Counterintuitively, we find that the friction force decreases with the ability of the RTILs to form crystal-like structures in the confined region. The crystallization can be activated or inhibited by changing the polarity of the surface, providing a mechanism to tune friction with electric fields.
引用
收藏
页码:13256 / 13267
页数:12
相关论文
共 38 条
[1]   Structure in confined room-temperature ionic liquids [J].
Atkin, Rob ;
Warr, Gregory G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (13) :5162-5168
[2]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[3]   AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films [J].
Bhushan, Bharat ;
Palacio, Manuel ;
Kinzig, Barbara .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 317 (01) :275-287
[4]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[5]   Shear dynamics of nanoconfined ionic liquids [J].
Canova, Filippo Federici ;
Matsubara, Hiroki ;
Mizukami, Masashi ;
Kurihara, Kazue ;
Shluger, Alexander L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (18) :8247-8256
[6]   Frictional forces in an electrolytic environment [J].
Daikhin, LI ;
Urbakh, M .
PHYSICAL REVIEW E, 1999, 59 (02) :1921-1931
[7]   Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness [J].
David, Alessio ;
Fajardo, Oscar Y. ;
Kornyshev, Alexei A. ;
Urbakh, Michael ;
Bresme, Fernando .
FARADAY DISCUSSIONS, 2017, 199 :279-297
[8]   Electrotunable Lubrication with Ionic Liquids: the Effects of Cation Chain Length and Substrate Polarity [J].
Di Lecce, Silvia ;
Kornyshev, Alexei A. ;
Urbakh, Michael ;
Bresme, Fernando .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (03) :4105-4113
[9]   Analytical Models for Atomic Friction [J].
Dong, Yalin ;
Vadakkepatt, Ajay ;
Martini, Ashlie .
TRIBOLOGY LETTERS, 2011, 44 (03) :367-386
[10]   Ionic Liquids Confined in Hydrophilic Nanocontacts: Structure and Lubricity in the Presence of Water [J].
Espinosa-Marzal, R. M. ;
Arcifa, A. ;
Rossi, A. ;
Spencer, N. D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (12) :6491-6503