Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data
被引:8
作者:
He, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China
Shandong Normal Univ, Coll Populat Resource & Environm, Jinan 250014, Shandong, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
He, Peng
[1
,2
,3
,4
]
Xu, Xingang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Xu, Xingang
[1
,2
]
Zhang, Baolei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Coll Populat Resource & Environm, Jinan 250014, Shandong, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Zhang, Baolei
[4
]
Li, Zhenhai
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Li, Zhenhai
[1
,2
]
Feng, Haikuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Feng, Haikuan
[1
,2
]
Yang, Guijun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Yang, Guijun
[1
,2
]
Zhang, Yongfeng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R ChinaBeijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
Zhang, Yongfeng
[1
,2
]
机构:
[1] Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[2] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[3] Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China
[4] Shandong Normal Univ, Coll Populat Resource & Environm, Jinan 250014, Shandong, Peoples R China
来源:
REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII
|
2015年
/
9637卷
关键词:
spectral indices;
variable importance for projection;
grey relational analysis;
partial least squares regression;
leaf chlorophyll content;
Winter wheat;
AREA INDEX;
VEGETATION INDEXES;
REFLECTANCE;
NITROGEN;
SENESCENCE;
LEAVES;
CORN;
BAND;
D O I:
10.1117/12.2195465
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Accurate estimation of leaf chlorophyll content (LCC) has great significance in study of the winter wheat, which is important for indicating nutrition status and photosynthetic. Selecting the closed related variable is the key to LCC monitoring. The variable importance for projection (VIP), applied to little samples and strong correlation data, is one of variable selection methods. In this study, VIP was used to select spectral variables, which includes reflectance spectra, first derivative spectra, vegetation indices and absorption or reflectance position features. The grey relational analysis (GRA) was used as a comparison. The results showed that (1) the VIP technology could be used to variable selection and had a strong correlation. (2) Reflectance spectra with the VIP method displayed the best accuracy, with R-2 and RMSE of 0.42 and 0.663mg/g, respectively. (3) Vegetation indices using GRA had higher estimation than VIP method, with R-2 and RMSE of 0.52 and 0.607 mg/g, respectively. (4) The VIP had more superiority and higher accuracy than the GRA in all kinds of hyperspectral features except vegetation indices. Therefore, the VIP technology could be used to the estimation of LCC and had a relatively good accuracy.