Affine approximation of Lipschitz functions and nonlinear quotients

被引:60
作者
Bates, S [1 ]
Johnson, WB
Lindenstrauss, J
Preiss, D
Schechtman, G
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[4] UCL, Dept Math, London WC1E 6BT, England
[5] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1007/s000390050108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New concepts related to approximating a Lipschitz function between Banach spaces by affine functions are introduced. Results which clarify when such approximations are possible are proved and in some cases a complete characterization of the spaces X, Y for which any Lipschitz function from X to Y can be so approximated is obtained. This is applied to the study of Lipschitz and uniform quotient mappings between Banach spaces. It is proved, in particular, that any Banach space which is a uniform quotient of L-p, 1 < p < infinity, is already isomorphic to a linear quotient of L-p.
引用
收藏
页码:1092 / 1127
页数:36
相关论文
共 33 条
[1]   UNIFORM EQUIVALENCE BETWEEN BANACH-SPACES [J].
AHARONI, I ;
LINDENSTRAUSS, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (02) :281-283
[2]   UNIFORM EMBEDDINGS OF METRIC-SPACES AND OF BANACH-SPACES INTO HILBERT-SPACES [J].
AHARONI, I ;
MAUREY, B ;
MITYAGIN, BS .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (03) :251-265
[3]  
[Anonymous], 1993, ERGEBNISSE MATH IHRE
[4]   On smooth, nonlinear surjections of Banach spaces [J].
Bates, SM .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :209-220
[5]  
BENYAMINI Y, 1984, TEX FUNCT AN SEM, P15
[6]  
BENYAMINI Y, IN PRESS C PUBLICATI
[7]   MARTINGALES VALUED IN CERTAIN SUBSPACES OF L1 [J].
BOURGAIN, J ;
ROSENTHAL, HP .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (1-2) :54-75
[8]  
BOURGIN RD, 1983, SPRINGER LECT NOTES, V993
[9]  
CASAZZA P. G., 1983, TEX FUNCT AN SEM 198, P61
[10]  
CASAZZA P. G., 1989, SPRINGER LECT NOTES, V1363