Investigation of the Reasons for Capacity Fading in Li-Ion Battery Cells

被引:55
作者
Ziv, Baruch [1 ]
Borgel, Valentina [1 ]
Aurbach, Doron [1 ]
Kim, Jung-Hyun [2 ]
Xiao, Xingcheng [2 ]
Powell, Bob R. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Gen Motors Global Res & Dev Ctr, Chem & Mat Syst Lab, Warren, MI 48090 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL-BEHAVIOR; ELEVATED-TEMPERATURES; CYCLING PERFORMANCE; LITHIUM BATTERIES; SPINEL OXIDES; ELECTRODES; MECHANISMS; MN; STORAGE; FADE;
D O I
10.1149/2.0731410jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Investigation of the failure mechanisms of Li-ion batteries and the consequences of their failure is of vital importance to the design of durable batteries. In this work, we examined the electrochemical performance of half and full Li-ion battery cells with several cathode materials including LiMn0.8Fe0 2PO4 (LMFP), LiNi0.5Mn1.5O4 (LMNO), and Li[LixNiyCozMn1-x-y-z]O-2 Li-rich layered oxides (HC-MNC). In contrast to half cells which demonstrated good cycling performance with more than 90% of their initial capacities retained after 100 cycles, the full cells exhibited severe capacity loss. Based on postmortem analyzes of electrodes from cells cycled at 30 and 60 degrees C, using electrochemical, spectroscopic, and microscopic techniques, we conclude that the loss of active lithium ions due to parasitic side reactions is a main reason for capacity fading of Li-ion battery full cells. Structural degradation of the electrodes during cycling is at best a second order effect. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1672 / A1680
页数:9
相关论文
共 50 条
  • [1] Practical Capacity Fading Model for Li-Ion Battery Cells in Electric Vehicles
    Lam, Long
    Bauer, Pavol
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) : 5910 - 5918
  • [2] Integration of capacity fading in an electrochemical model of Li-ion batteries
    Kang, Jianqiang
    Conlisk, A. T.
    Rizzoni, Giorgio
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2425 - 2434
  • [3] Li-ion battery capacity estimation: A geometrical approach
    Lu, Chen
    Tao, Laifa
    Fan, Huanzhen
    JOURNAL OF POWER SOURCES, 2014, 261 : 141 - 147
  • [4] The study of capacity fading processes of Li-ion batteries: major factors that play a role
    Markovsky, B
    Rodkin, A
    Cohen, YS
    Palchik, O
    Levi, E
    Aurbach, D
    Kim, HJ
    Schmidt, M
    JOURNAL OF POWER SOURCES, 2003, 119 : 504 - 510
  • [5] Capacity-Fading Behavior Analysis for Early Detection of Unhealthy Li-Ion Batteries
    Lee, Changyong
    Jo, Sugyeong
    Kwon, Daeil
    Pecht, Michael G.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) : 2659 - 2666
  • [6] Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes
    Kwon, Yo Han
    Minnici, Krysten
    Huie, Matthew M.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Reichmanis, Elsa
    CHEMISTRY OF MATERIALS, 2016, 28 (18) : 6689 - 6697
  • [7] Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells
    Kim, Hyang-Rim
    Woo, Sang-Gil
    Kim, Jae-Hun
    Cho, Woosuk
    Kim, Young-Jun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 782 : 168 - 173
  • [8] High capacity carbon anode for Li-ion battery - A theoretical explanation
    Tokumitsu, K
    Fujimoto, H
    Mabuchi, A
    Kasuh, T
    CARBON, 1999, 37 (10) : 1599 - 1605
  • [9] Nanoflake CoN as a high capacity anode for Li-ion batteries
    Das, B.
    Reddy, M. V.
    Malar, P.
    Osipowicz, Thomas
    Rao, G. V. Subba
    Chowdari, B. V. R.
    SOLID STATE IONICS, 2009, 180 (17-19) : 1061 - 1068
  • [10] Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li-Ion Battery
    Cui, Suihan
    Wei, Yi
    Liu, Tongchao
    Deng, Wenjun
    Hu, Zongxiang
    Su, Yantao
    Li, Hao
    Li, Maofan
    Guo, Hua
    Duan, Yandong
    Wang, Weidong
    Rao, Mumin
    Zheng, Jiaxin
    Wang, Xinwei
    Pan, Feng
    ADVANCED ENERGY MATERIALS, 2016, 6 (04)