Quantitative studies of the homogeneous Bethe-Salpeter equation in Minkowski space

被引:56
作者
Frederico, Tobias [1 ]
Salme, Giovanni [2 ]
Viviani, Michele [3 ]
机构
[1] DCTA, Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Paulo, Brazil
[2] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
SCALAR THEORIES;
D O I
10.1103/PhysRevD.89.016010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Bethe-Salpeter equation for a bound system, composed by two massive scalars exchanging a massive scalar, is quantitatively investigated in ladder approximation, within the Nakanishi integral representation approach. For the S-wave case, numerical solutions with a form inspired by the Nakanishi integral representation are calculated. The needed Nakanishi weight functions are evaluated by solving two different eigenequations, obtained directly from the Bethe-Salpeter equation applying the light-front projection technique. A remarkable agreement, in particular, for the eigenvalues, is achieved, numerically confirming that the Nakanishi uniqueness theorem for the weight functions demonstrated in the context of the perturbative analysis of the multileg transition amplitudes and playing a basic role in suggesting one of the two adopted eigenequations can be extended to a nonperturbative realm. The detailed, quantitative studies are completed by presenting both probabilities and light-front momentum distributions for the valence component of the bound state.
引用
收藏
页数:21
相关论文
共 36 条
[1]   INCONSISTENCY OF CUBIC BOSON-BOSON INTERACTIONS [J].
BAYM, G .
PHYSICAL REVIEW, 1960, 117 (03) :886-888
[2]   Bethe-Salpeter approach with the separable interaction for the deuteron [J].
Bondarenko, S. G. ;
Burov, V. V. ;
Molochkov, A. V. ;
Smirnov, G. I. ;
Toki, H. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 48, 2002, 48 (02) :449-535
[3]  
Brodsky SJ, 1998, PHYS REP, V301, P300
[4]   Cross-ladder effects in Bethe-Salpeter and light-front equations [J].
Carbonell, J ;
Karmanov, VA .
EUROPEAN PHYSICAL JOURNAL A, 2006, 27 (01) :11-21
[5]   Solutions of the Bethe-Salpeter Equation in Minkowski Space and Applications to Electromagnetic Form Factors [J].
Carbonell, J. ;
Karmanov, V. A. .
FEW-BODY SYSTEMS, 2011, 49 (1-4) :205-222
[6]   Solving the Bethe-Salpeter equation for two fermions in Minkowski space [J].
Carbonell, J. ;
Karmanov, V. A. .
EUROPEAN PHYSICAL JOURNAL A, 2010, 46 (03) :387-397
[7]   Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space [J].
Carbonell, J. ;
Karmanov, V. A. ;
Mangin-Brinet, M. .
EUROPEAN PHYSICAL JOURNAL A, 2009, 39 (01) :53-60
[8]   Explicitly covariant light-front dynamics and relativistic few-body systems [J].
Carbonell, J ;
Desplanques, B ;
Karmanov, VA ;
Mathiot, JF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 300 (5-6) :215-347
[9]   SOLUTIONS OF A BETHE-SALPETER EQUATION [J].
CUTKOSKY, RE .
PHYSICAL REVIEW, 1954, 96 (04) :1135-1141
[10]   Two-body scattering states in Minkowski space and the Nakanishi integral representation onto the null plane [J].
Frederico, T. ;
Salme, G. ;
Viviani, M. .
PHYSICAL REVIEW D, 2012, 85 (03)