Estimation of some partially specified nonlinear models

被引:12
作者
Ai, CR [1 ]
McFadden, D [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT ECON,BERKELEY,CA 94720
关键词
estimand; series estimation; partially specified; nonlinear;
D O I
10.1016/0304-4076(95)01778-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a procedure for analyzing a partially specified nonlinear regression model in which the nuisance parameter is an unrestricted function of a subset of regressors. The procedure does not require parametric modeling of the nuisance parameter but assumes that the model can be transformed into a partially specified linear equation by inverting some nonlinear functions. The model parameters are estimated by applying Robinson's (1988a) procedure and the estimator is shown to be root N-consistent and asymptotically normal. One attraction of the estimator is that it is computationally simple, requiring no more than least squares regressions. A simulation study indicates that the estimator has practical values.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 31 条
[1]   MAXIMUM LIKELIHOOD, MINIMUM CHI-SQUARE AND NONLINEAR WEIGHTED LEAST-SQUARES ESTIMATOR IN GENERAL QUALITATIVE RESPONSE MODEL [J].
AMEMIYA, T .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :347-351
[3]  
Amemiya Takeshi., 1985, Advanced Econometrics
[4]  
ANDREWS D, 1989, 874R YAL U COWL F DI
[5]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[6]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[8]  
BERKSON J, 1957, BIOMETRIKA, V44, P411
[9]   MINIMUM CHI-SQUARE, NOT MAXIMUM-LIKELIHOOD [J].
BERKSON, J ;
EFRON, B ;
GHOSH, JK ;
LECAM, L ;
PFANZAGL, J ;
RAO, CR .
ANNALS OF STATISTICS, 1980, 8 (03) :457-487
[10]   EFFICIENCY BOUNDS FOR SEMIPARAMETRIC REGRESSION [J].
CHAMBERLAIN, G .
ECONOMETRICA, 1992, 60 (03) :567-596