Diamond shaped standing wave patterns of a two-dimensional Boussinesq system

被引:2
作者
Li, Shenghao [1 ]
Chen, Min [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Bifurcation standing wave patterns; Boussinesq system; Water waves; NONLINEAR DISPERSIVE MEDIA; AMPLITUDE LONG WAVES; EQUATIONS;
D O I
10.1016/j.apnum.2018.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a large family of two-dimensional diamond shaped standing waves for a Boussinesq system which describes two-way propagation of water waves in a channel. Our proof uses the Lyapunov-Schmidt method to find the bifurcation standing waves. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 11 条
[1]   Long wave approximations for water waves [J].
Bona, JL ;
Colin, T ;
Lannes, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (03) :373-410
[2]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[3]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[4]   Standing waves for a two-way model system for water waves [J].
Chen, M ;
Iooss, G .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2005, 24 (01) :113-124
[5]   Asymmetric periodic traveling wave patterns of two-dimensional Boussinesq systems [J].
Chen, Min ;
Iooss, Gerard .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1539-1552
[6]   Periodic wave patterns of two-dimensional Boussinesq systems [J].
Chen, Min ;
Iooss, Gerard .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2006, 25 (04) :393-405
[7]  
Haragus M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-112-7
[8]   Existence of multimodal standing gravity waves [J].
Iooss, G ;
Plotnikov, P .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 3) :S349-S364
[9]   Standing waves on an infinitely deep perfect fluid under gravity [J].
Iooss, G ;
Plotnikov, PI ;
Toland, JF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 177 (03) :367-478
[10]   Multimodal standing gravity waves: a completely resonant system [J].
Iooss, G ;
Plotnikov, P .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 1) :S110-S126