Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences

被引:176
作者
Mallick, Himel [1 ,2 ]
Franzosa, Eric A. [1 ,2 ]
McIver, Lauren J. [1 ,2 ]
Banerjee, Soumya [1 ,2 ]
Sirota-Madi, Alexandra [1 ,2 ]
Kostic, Aleksandar D. [1 ,2 ]
Clish, Clary B. [1 ]
Vlamakis, Hera [1 ]
Xavier, Ramnik J. [1 ,3 ,4 ,5 ,6 ,7 ]
Huttenhower, Curtis [1 ,2 ]
机构
[1] Broad Inst & Harvard, Cambridge, MA 02142 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Boston, MA 02114 USA
[4] Harvard Med Sch, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Gastrointestinal Unit, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Ctr Study Inflammatory Bowel Dis, Boston, MA 02114 USA
[7] MIT, Ctr Microbiome Informat & Therapeut, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GUT MICROBIOTA; HEALTH; METABOLITES; ENCYCLOPEDIA; ALIGNMENT; DATABASE; ACIDS; HMDB;
D O I
10.1038/s41467-019-10927-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this 'predictive metabolomic' approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
引用
收藏
页数:11
相关论文
共 69 条
[1]   Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine [J].
An, Dingding ;
Na, Chongzheng ;
Bielawski, Jacek ;
Hannun, Yusuf A. ;
Kasper, Dennis L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4666-4671
[2]   An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection [J].
Antharam, Vijay C. ;
McEwen, Daniel C. ;
Garrett, Timothy J. ;
Dossey, Aaron T. ;
Li, Eric C. ;
Kozlov, Andrew N. ;
Mesbah, Zhubene ;
Wang, Gary P. .
PLOS ONE, 2016, 11 (02)
[3]   GenABEL: an R library for genome-wide association analysis [J].
Aulchenko, Yurii S. ;
Ripke, Stephan ;
Isaacs, Aaron ;
Van Duijn, Cornelia M. .
BIOINFORMATICS, 2007, 23 (10) :1294-1296
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level [J].
Barton, Wiley ;
Penney, Nicholas C. ;
Cronin, Owen ;
Garcia-Perez, Isabel ;
Molloy, Michael G. ;
Holmes, Elaine ;
Shanahan, Fergus ;
Cotter, Paul D. ;
O'Sullivan, Orla .
GUT, 2018, 67 (04) :625-633
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Metabolic network modeling of microbial communities [J].
Biggs, Matthew B. ;
Medlock, Gregory L. ;
Kolling, Glynis L. ;
Papin, Jason A. .
WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2015, 7 (05) :317-334
[8]   Confidence intervals for correlations when data are not normal [J].
Bishara, Anthony J. ;
Hittner, James B. .
BEHAVIOR RESEARCH METHODS, 2017, 49 (01) :294-309
[9]   Testing the Significance of a Correlation With Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches [J].
Bishara, Anthony J. ;
Hittner, James B. .
PSYCHOLOGICAL METHODS, 2012, 17 (03) :399-417
[10]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120