WASSERSTEIN BARYCENTERS IN THE MANIFOLD OF ALL POSITIVE DEFINITE MATRICES

被引:0
作者
Nobari, Elham [1 ]
Kakavandi, Bijan Ahmadi [2 ]
机构
[1] Univ Sci & Technol Mazandaran, Dept Math, Behshahr, Iran
[2] Shahid Beheshti Univ, Dept Math Sci, GC, POB 19839-69411, Tehran, Iran
关键词
Wasserstein barycenters; optimal transport; positive definite matrices; numerical methods for nonsmooth convex minimization; EXISTENCE;
D O I
10.1090/qam/1535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Wasserstein barycenter of finitely many Borel probability measures on P-n, the Riemannian manifold of all n x n real positive definite matrices as well as its associated dual problem, namely the optimal transport problem. Our results generalize some results of Agueh and Carlier on R-n to Pn. We show the existence of the optimal solutions and the Wasserstein barycenter measure. Furthermore, via a discretization approach and using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method for nonsmooth convex optimization, we propose a numerical method for computing the potential functions of the optimal transport problem. Also, thanks to the so-called optimal transport Jacobian on Riemannian manifolds of Cordero-Erausquin, McCann, and Schmuckenschlager, we show that the density of the Wasserstein barycenter measure can be approximated numerically. The paper concludes with some numerical experiments.
引用
收藏
页码:655 / 669
页数:15
相关论文
共 25 条
[1]   BARYCENTERS IN THE WASSERSTEIN SPACE [J].
Agueh, Martial ;
Carlier, Guillaume .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :904-924
[2]  
AMBROSIO L., 2005, LECT MATH ETH ZURICH
[3]  
[Anonymous], SERIES MATH ANAL APP
[4]  
Attouch H., 1986, N HOLLAND MATH LIB, V34, P125
[5]  
Benamous J.-D., 1999, Contemporary mathematics, V226, P1
[6]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[7]  
Bhatia R., 2018, Expositiones Mathematicae
[8]  
Bridson MR., 2013, METRIC SPACES NONPOS, DOI DOI 10.1007/978-3-662-12494-9
[9]   NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS [J].
Carlier, Guillaume ;
Oberman, Adam ;
Oudet, Edouard .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06) :1621-1642
[10]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257