Thermodynamics of β-amyloid fibril formation

被引:25
|
作者
Tiana, G
Simona, F
Brogliaa, RA
Colombo, G
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[3] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[4] CNR, Ist Chim Riconoscimento Mol, I-20131 Milan, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 17期
关键词
D O I
10.1063/1.1689293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amyloid fibers are aggregates of proteins. They are built out of a peptide called beta-amyloid (Abeta) containing between 41 and 43 residues, produced by the action of an enzyme which cleaves a much larger protein known as the amyloid precursor protein (APP). X-ray diffraction experiments have shown that these fibrils are rich in beta-structures, whereas the shape of the peptide displays an alpha-helix structure within the APP in its biologically active conformation. A realistic model of fibril. formation is developed based on the 17 residues Abeta12-28 amyloid peptide, which has been shown to form fibrils structurally similar to those of the whole A,8 peptide. With the help of physical arguments and in keeping with experimental findings, the Abeta12-28 monomer is assumed to be in four possible states (i.e., native helix conformation, beta-hairpin, globular low-energy state, and unfolded state). Making use of these monomeric states, oligomers (dimers, tertramers, and octamers) were constructed. With the help of short, detailed molecular dynamics calculations of the three monomers and of a variety of oligomers, energies for these structures were obtained. Making use of these results within the framework of a simple yet realistic model to describe the entropic terms associated with the variety of amyloid conformations, a phase diagram can be calculated of the whole many-body system, leading to a thermodynamical picture in overall agreement with the experimental findings. In particular, the existence of micellar metastable states seem to be a key issue to determine the thermodynamical properties of the system. (C) 2004 American Institute of Physics.
引用
收藏
页码:8307 / 8317
页数:11
相关论文
共 50 条
  • [21] Effect of Surfaces on Amyloid Fibril Formation
    Moores, Bradley
    Drolle, Elizabeth
    Attwood, Simon J.
    Simons, Janet
    Leonenko, Zoya
    PLOS ONE, 2011, 6 (10):
  • [22] Elucidating the kinetics of β-amyloid fibril formation
    Edwin, NJ
    Bantchev, GB
    Russo, PS
    Hammer, RP
    McCarley, RL
    NEW POLYMERIC MATERIALS, 2005, 916 : 106 - 118
  • [23] Pathways and intermediates of amyloid fibril formation
    Pellarin, Riccardo
    Guarnera, Enrico
    Caflisch, Amedeo
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 374 (04) : 917 - 924
  • [24] Sequence determinants of amyloid fibril formation
    de la Paz, ML
    Serrano, L
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) : 87 - 92
  • [25] Kinetic analysis of amyloid fibril formation
    Naiki, H
    Gejyo, F
    AMYLOID, PRIONS, AND OTHER PROTEIN AGGREGATES, 1999, 309 : 305 - 318
  • [26] THE ROLE OF MICROGLIA IN AMYLOID FIBRIL FORMATION
    WISNIEWSKI, HM
    WEGIEL, J
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1994, 20 (02) : 192 - 194
  • [27] Amyloid fibril formation by a helical cytochrome
    Pertinhez, TA
    Bouchard, ML
    Tomlinson, EJ
    Wain, R
    Ferguson, SJ
    Dobson, CM
    Smith, LJ
    FEBS LETTERS, 2001, 495 (03) : 184 - 186
  • [28] A catalytic surface for amyloid fibril formation
    Hammarstrom, Per
    Ali, Malik M.
    Mishra, Rajesh
    Svensson, Samuel
    Tengvall, Pentti
    Lundstrom, Ingemar
    PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100
  • [29] Apolipoproteins and amyloid fibril formation in atherosclerosis
    Teoh, Chai Lean
    Griffin, Michael D. W.
    Howlett, Geoffrey J.
    PROTEIN & CELL, 2011, 2 (02) : 116 - 127
  • [30] New Mechanism of Amyloid Fibril Formation
    Galzitskaya, Oxana
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2019, 20 (06) : 630 - 640