Chern-Simons theory and knot invariants

被引:0
作者
Pichai, Ramadevi [1 ]
Singh, Vivek Kumar [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Bombay, Maharashtra, India
来源
PHYSICS AND MATHEMATICS OF LINK HOMOLOGY | 2016年 / 680卷
关键词
Chern-Simons field theory; knot polynomials; POLYNOMIAL INVARIANT; FIELD-THEORY; LINKS;
D O I
10.1090/conm/680/13698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will present some of the salient features of knots and three manifolds. Then we will elaborate Chern-Simons field theoretic approach of obtaining invariants of knots and three-manifolds. The powerfulness and limitations of the Chern-Simons field theory invariants in attempting 'classification of knots and links' is briefly discussed.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 32 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]  
[Anonymous], 1960, Canadian Journal of Mathematics, DOI [DOI 10.4153/CJM-1960-045-7, 10.4153/CJM-1960-045-7]
[3]  
Atiyah M.F., 1989, MINICONFERENCE GEOME, P1
[4]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[5]  
DEVI PR, 1993, NUCL PHYS B, V402, P548, DOI 10.1016/0550-3213(93)90652-6
[6]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P279
[7]   A NEW POLYNOMIAL INVARIANT OF KNOTS AND LINKS [J].
FREYD, P ;
YETTER, D ;
HOSTE, J ;
LICKORISH, WBR ;
MILLETT, K ;
OCNEANU, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (02) :239-246
[8]  
Gaume L. Alvarez, TOPICS CONFORMAL FIE
[9]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[10]  
Kauffman L. H., 1991, SERIES KNOTS EVERYTH, V1