Hierarchical Graphene-Containing Carbon Nanofibers for Lithium-Ion Battery Anodes

被引:36
作者
Dufficy, Martin K. [1 ]
Khan, Saad A. [1 ]
Fedkiw, Peter S. [1 ]
机构
[1] N Carolina State Univ, Dept Biomol & Chem Engn, 911 Partners Way, Raleigh, NC 27695 USA
关键词
carbon nanofibers; electrospinning; graphene; lithium-ion battery; anode; SILICON ANODES; SECONDARY BATTERIES; OXIDE; GRAPHITE; POLYACRYLONITRILE; PERFORMANCE; ELECTRODES; STORAGE; TIN; STABILIZATION;
D O I
10.1021/acsami.5b10069
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a method to produce composite anodes consisting of thermally reduced graphene oxide-containing carbon nanofibers (TRGO/CNFs) via electrospinning a dispersion of polyacrylonitrile (PAN) and graphene oxide (GO) sheets in dimethylformamide followed by heat treatment at 650 degrees C. A range of GO (1-20 wt % GO relative to polymer concentration) was added to the polymer solution, with each sample comprising similar polymer chain packing and subsequent CNF microstructure, as assessed by X-ray diffraction. An increase from 0 to 20 wt % GO in the fibers led to carbonized nonwovens with enhanced electronic conductivity, as TRGO sheets conductively connected the CNFs. Galvanostatic half-cell cycling revealed that TRGO addition enhanced the specific discharge capacity of the fibers. The optimal GO concentration of 5 wt % GO enhanced first-cycle discharge capacities at C/24 rates (15.6 mA g(-1)) 150% compared to CNFs, with a 400% capacity increase at 2-C rates (750 mA g(-1)). We attribute the capacity enhancement to a high degree of GO exfoliation. The TRGO/CNFs also experienced no capacity fade after 200 cycles at 2-C rates. Impedance spectroscopy of the composite anodes demonstrated that charge-transfer resistances decreased as GO content increased, implying that high GO loadings result in more electrochemically active material.
引用
收藏
页码:1327 / 1336
页数:10
相关论文
共 51 条
[1]   THE VARIATION OF THE D-SPACINGS WITH STRESS IN THE HEXAGONAL POLYMORPH OF POLYACRYLONITRILE [J].
ALLEN, RA ;
WARD, IM ;
BASHIR, Z .
POLYMER, 1994, 35 (19) :4035-4040
[2]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[3]   Nanodiamond gels in nonpolar media: Colloidal and rheological properties [J].
Burns, Nancy A. ;
Naclerio, Michael A. ;
Khan, Saad A. ;
Shojaei, Akbar ;
Raghavan, Srinivasa R. .
JOURNAL OF RHEOLOGY, 2014, 58 (05) :1599-1614
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[6]   Polyacrylonitrile Fibers Containing Graphene Oxide Nanoribbons [J].
Chien, An-Ting ;
Liu, H. Clive ;
Newcomb, Bradley A. ;
Xiang, Changsheng ;
Tour, James M. ;
Kumar, Satish .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5281-5288
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Galactomannan binding agents for silicon anodes in Li-ion batteries [J].
Dufficy, Martin K. ;
Khan, Saad A. ;
Fedkiw, Peter S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) :12023-12030
[10]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)