Nanoelectronic primary thermometry below 4mK

被引:33
作者
Bradley, D. I. [1 ]
George, R. E. [1 ]
Gunnarsson, D. [2 ]
Haley, R. P. [1 ]
Heikkinen, H. [2 ]
Pashkin, Yu. A. [1 ,3 ]
Penttila, J. [4 ]
Prance, J. R. [1 ]
Prunnila, M. [2 ]
Roschier, L. [3 ]
Sarsby, M. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] VTT Tech Res Ctr Finland, POB 1000, Espoo 02044, Finland
[3] PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Aivon Oy, Valimotie 13A, Helsinki 00380, Finland
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
COULOMB-BLOCKADE THERMOMETRY; TUNNEL-JUNCTIONS; REGIME; ARRAYS;
D O I
10.1038/ncomms10455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to similar to 10mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the He-3/He-4 refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Comparison of cryogenic filters for use in single electronics experiments [J].
Bladh, K ;
Gunnarsson, D ;
Hürfeld, E ;
Devi, S ;
Kristoffersson, C ;
Smålander, B ;
Pehrson, S ;
Claeson, T ;
Delsing, P ;
Taslakov, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03) :1323-1327
[2]   SIMPLE DESIGN FOR DILUTION REFRIGERATOR WITH BASE TEMPERATURE OF 2.3-MK [J].
BRADLEY, DI ;
FOLLOWS, MR ;
MILLER, IE ;
OSWALD, R ;
WARD, M .
CRYOGENICS, 1994, 34 (06) :549-550
[3]   Metallic Coulomb blockade thermometry down to 10 mK and below [J].
Casparis, L. ;
Meschke, M. ;
Maradan, D. ;
Clark, A. C. ;
Scheller, C. P. ;
Schwarzwaelder, K. K. ;
Pekola, J. P. ;
Zumbuehl, D. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (08)
[4]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174
[5]   ELECTRON-PHONON SCATTERING RATES IN DISORDERED METALLIC-FILMS BELOW 1-K [J].
ECHTERNACH, PM ;
THOMAN, MR ;
GOULD, CM ;
BOZLER, HM .
PHYSICAL REVIEW B, 1992, 46 (16) :10339-10344
[6]   One dimensional arrays and solitary tunnel junctions in the weak Coulomb blockade regime: CBT thermometry [J].
Farhangfar, S ;
Hirvi, KP ;
Kauppinen, JP ;
Pekola, JP ;
Toppari, JJ ;
Averin, DV ;
Korotkov, AN .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1997, 108 (1-2) :191-215
[7]   Primary Thermometry in the Intermediate Coulomb Blockade Regime [J].
Feshchenko, A. V. ;
Meschke, M. ;
Gunnarsson, D. ;
Prunnila, M. ;
Roschier, L. ;
Penttila, J. S. ;
Pekola, J. P. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 173 (1-2) :36-44
[8]   Opportunities for mesoscopics in thermometry and refrigeration:: Physics and applications [J].
Giazotto, F ;
Heikkilä, TT ;
Luukanen, A ;
Savin, AM ;
Pekola, JP .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :217-274
[9]   Dielectric losses in multi-layer Josephson junction qubits [J].
Gunnarsson, David ;
Pirkkalainen, Juha-Matti ;
Li, Jian ;
Paraoanu, Gheorghe Sorin ;
Hakonen, Pertti ;
Sillanpaa, Mika ;
Prunnila, Mika .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2013, 26 (08)
[10]   Investigation of Uncertainty Components in Coulomb Blockade Thermometry [J].
Hahtela, O. M. ;
Meschke, M. ;
Savin, A. ;
Gunnarsson, D. ;
Prunnila, M. ;
Penttila, J. S. ;
Roschier, L. ;
Heinonen, M. ;
Manninen, A. ;
Pekola, J. P. .
TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOL 8, 2013, 1552 :142-147