Numerical results for the conservation of energy of Maxwell media for the Rayleigh-Stokes problem

被引:8
作者
Zierep, J. [1 ]
Bohning, R. [1 ]
Fetecau, C. [2 ]
机构
[1] Univ Karlsruhe, Inst Stromungslehre, D-76131 Karlsruhe, Germany
[2] Tech Univ, Dept Math, Iasi 700050, Romania
关键词
Maxwell fluid; Dissipation; Power of the shear stresses at the wall; Boundary layer thickness; Rayleigh-Stokes problem; IMPULSIVE MOTION; FLAT-PLATE; FLUID;
D O I
10.1016/j.ijnonlinmec.2009.06.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This publication continues our studies of analytical solutions of the Rayleigh-Stokes problem for Maxwell fluids [J. Zierep, C. Fetecau, Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid, Int. J. Eng. Sci. 45 (2007) 617-627]. We start from the Fourier sine transform. The numerical result is given and discussed for the velocity u, the power of the wall shear stresses Phi, the dissipation 0 and the boundary layer thickness delta. These new results are important for nature and technology. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:862 / 864
页数:3
相关论文
共 14 条
[1]  
Bandelli R., 1995, ARCH MECH, V47, P661
[2]  
Bohme G, 2000, Stromungsmechanik nichtnewtonscher Fluide, V2
[3]   The first problem of Stokes for an Oldroyd-B fluid [J].
Fetecau, C ;
Fetecau, C .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (10) :1539-1544
[4]   On a class of exact solutions of the equations of motion of a second grade fluid [J].
Fetecau, C ;
Zierep, J .
ACTA MECHANICA, 2001, 150 (1-2) :135-138
[5]   A new exact solution for the flow of a Maxwell fluid past an infinite plate [J].
Fetecau, C ;
Fetecau, C .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (03) :423-427
[6]  
Maxwell J.C., 1866, Proceedings of the Royal Society of London, V15, P167
[7]   IMPULSIVE MOTION OF A FLAT-PLATE IN A RIVLIN-ERICKSEN FLUID [J].
PURI, P .
RHEOLOGICA ACTA, 1984, 23 (04) :451-453
[8]   A thermodynamic frame work for rate type fluid models [J].
Rajagopal, KR ;
Srinivasa, AR .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2000, 88 (03) :207-227
[9]  
Rajagopal KR., 1993, RECENT DEV THEORETIC, P129
[10]  
Schlichting H., 1968, Boundary Layer Theory, V6