Calderon-Zygmund-type operators on weighted weak hardy spaces over Rn

被引:0
作者
Quek, T [1 ]
Yang, DC
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
Calderon-Zygmund operator; Lebesgue space; weak Lebesgue space; Hardy space; weak Hardy space; atom; weight;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce certain Calderon-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces, weighted weak Lebesgue spaces, weighted Hardy spaces and weighted weak Hardy spaces. The sharpness of some results is also investigated.
引用
收藏
页码:141 / 160
页数:20
相关论文
共 15 条
[1]  
ALVAREZ J, 1994, LECT NOTES PURE APPL, V157, P17
[2]  
[Anonymous], 1978, ASTERISQUE
[3]  
FEFFERMAN R, 1987, STUD MATH, V85, P1
[4]   CALDERON-ZYGMUND OPERATORS AND UNCONDITIONAL BASES OF WEIGHTED HARDY-SPACES [J].
GARCIACUERVA, J ;
KAZARIAN, KS .
STUDIA MATHEMATICA, 1994, 109 (03) :255-276
[5]  
GARCIACUERVA J, 1985, 116 MATH
[6]  
Journe J.-L., 1983, LECT NOTES MATH, V994
[7]  
Liu H., 1991, LECT NOTES MATH, P113, DOI [10.1007/BFb0087762, DOI 10.1007/BFB0087762.48]
[8]  
LU S, 1992, J BEIJING NORMAL U N, V28, P409
[9]  
QUEK TS, 1998, WEIGHTED WEAK HARDY
[10]   A REMARK ON SINGULAR-INTEGRALS AND POWER WEIGHTS [J].
SORIA, F ;
WEISS, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (01) :187-204