A minimal conformational switching-dependent model for amyloid self-assembly

被引:9
作者
Ranganathan, Srivastav [1 ]
Ghosh, Dhiman [1 ]
Maji, Samir K. [1 ]
Padinhateeri, Ranjith [1 ]
机构
[1] Indian Inst Technol, Dept Biosci & Bioengn, Mumbai, Maharashtra, India
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
MOLECULAR-DYNAMICS SIMULATIONS; BETA-PROTEIN OLIGOMERIZATION; AGGREGATION KINETIC-DATA; FORCE GENERATION; FIBRIL GROWTH; NUCLEATION; MECHANISMS; POLYMERIZATION; MORPHOLOGY; PEPTIDES;
D O I
10.1038/srep21103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid formation is associated with various pathophysiological conditions like Alzheimer's and Parkinson's diseases as well as many useful functions. The hallmark of amyloid assemblies is a conformational transition of the constituent proteins into a beta-sheet rich filament. Accounting for this conformational transition in amyloidogenic proteins, we develop an analytically solvable model that can probe the dynamics of an ensemble of single filaments. Using the theory and Monte Carlo simulations, we show the presence of two kinetic regimes for the growth of a self-assembling filament - switching-dependent and -independent growth regimes. We observe a saturation in fibril elongation velocities at higher concentrations in the first regime, providing a novel explanation to the concentration-independence of growth velocities observed experimentally. We also compute the length fluctuation of the filaments to characterize aggregate heterogeneity. From the early velocities and length fluctuation, we propose a novel way of estimating the conformational switching rate. Our theory predicts a kinetic phase diagram that has three distinct phases - short oligomers/monomers, disordered aggregates and beta-rich filaments. The model also predicts the force generation potential and the intermittent growth of amyloid fibrils evident from single molecular experiments. Our model could contribute significantly to the physical understanding of amyloid aggregation.
引用
收藏
页数:14
相关论文
共 60 条
  • [1] Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils
    Ahmed, Mahiuddin
    Davis, Judianne
    Aucoin, Darryl
    Sato, Takeshi
    Ahuja, Shivani
    Aimoto, Saburo
    Elliott, James I.
    Van Nostrand, William E.
    Smith, Steven O.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2010, 17 (05) : 561 - U56
  • [2] Elucidating the Role of Disulfide Bond on Amyloid Formation and Fibril Reversibility of Somatostatin-14 RELEVANCE TO ITS STORAGE AND SECRETION
    Anoop, Arunagiri
    Ranganathan, Srivastav
    Das Dhaked, Bhagwan
    Jha, Narendra Nath
    Pratihar, Supriya
    Ghosh, Saikat
    Sahay, Shruti
    Kumar, Santosh
    Das, Subhadeep
    Kombrabail, Mamata
    Agarwal, Kumud
    Jacob, Reeba S.
    Singru, Praful
    Bhaumik, Prasenjit
    Padinhateeri, Ranjith
    Kumar, Ashutosh
    Maji, Samir K.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (24) : 16884 - 16903
  • [3] Time evolution of amyloid fibril length distribution described by a population balance model
    Arosio, Paolo
    Beeg, Marten
    Nicoud, Lucrece
    Morbidelli, Massimo
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 78 : 21 - 32
  • [4] Metastability of Native Proteins and the Phenomenon of Amyloid Formation
    Baldwin, Andrew J.
    Knowles, Tuomas P. J.
    Tartaglia, Gian Gaetano
    Fitzpatrick, Anthony W.
    Devlin, Glyn L.
    Shammas, Sarah Lucy
    Waudby, Christopher A.
    Mossuto, Maria F.
    Meehan, Sarah
    Gras, Sally L.
    Christodoulou, John
    Anthony-Cahill, Spencer J.
    Barker, Paul D.
    Vendruscolo, Michele
    Dobson, Christopher M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (36) : 14160 - 14163
  • [5] Direct observation of Aβ amyloid fibril growth and inhibition
    Ban, T
    Hoshino, M
    Takahashi, S
    Hamada, D
    Hasegawa, K
    Naiki, H
    Goto, Y
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (03) : 757 - 767
  • [6] Bernstein SL, 2009, NAT CHEM, V1, P326, DOI [10.1038/NCHEM.247, 10.1038/nchem.247]
  • [7] Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations
    Bieler, Noah S.
    Knowles, Tuomas P. J.
    Frenkel, Daan
    Vacha, Robert
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (10)
  • [8] Bleiholder C, 2011, NAT CHEM, V3, P172, DOI [10.1038/nchem.945, 10.1038/NCHEM.945]
  • [9] A molecular dynamics approach to the structural characterization of amyloid aggregation
    Cecchini, M
    Curcio, R
    Pappalardo, M
    Melki, R
    Caflisch, A
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2006, 357 (04) : 1306 - 1321
  • [10] Replica exchange molecular dynamics simulations of amyloid peptide aggregation
    Cecchini, M
    Rao, F
    Seeber, M
    Caflisch, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21) : 10748 - 10756