Depth-Quality-Aware Salient Object Detection

被引:89
作者
Chen, Chenglizhao [1 ]
Wei, Jipeng [1 ]
Peng, Chong [1 ]
Qin, Hong [2 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Object detection; Feature extraction; Streaming media; Training; Deep learning; Computational modeling; Task analysis; RGB-D salient object detection; weakly supervised learning; FUSION; SEGMENTATION; NETWORK;
D O I
10.1109/TIP.2021.3052069
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The existing fusion-based RGB-D salient object detection methods usually adopt the bistream structure to strike a balance in the fusion trade-off between RGB and depth (D). While the D quality usually varies among the scenes, the state-of-the-art bistream approaches are depth-quality-unaware, resulting in substantial difficulties in achieving complementary fusion status between RGB and D and leading to poor fusion results for low-quality D. Thus, this paper attempts to integrate a novel depth-quality-aware subnet into the classic bistream structure in order to assess the depth quality prior to conducting the selective RGB-D fusion. Compared to the SOTA bistream methods, the major advantage of our method is its ability to lessen the importance of the low-quality, no-contribution, or even negative-contribution D regions during RGB-D fusion, achieving a much improved complementary status between RGB and D. Our source code and data are available online at https://github.com/qdu1995/DQSD.
引用
收藏
页码:2350 / 2363
页数:14
相关论文
共 74 条
[31]   Deep Saliency with Encoded Low level Distance Map and High Level Features [J].
Lee, Gayoung ;
Tai, Yu-Wing ;
Kim, Junmo .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :660-668
[32]   ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection [J].
Li, Chongyi ;
Cong, Runmin ;
Kwong, Sam ;
Hou, Junhui ;
Fu, Huazhu ;
Zhu, Guopu ;
Zhang, Dingwen ;
Huang, Qingming .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (01) :88-100
[33]   Cross-Modal Weighting Network for RGB-D Salient Object Detection [J].
Li, Gongyang ;
Liu, Zhi ;
Ye, Linwei ;
Wang, Yang ;
Ling, Haibin .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :665-681
[34]   ICNet: Information Conversion Network for RGB-D Based Salient Object Detection [J].
Li, Gongyang ;
Liu, Zhi ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :4873-4884
[35]   Constrained fixation point based segmentation via deep neural network [J].
Li, Gongyang ;
Liu, Zhi ;
Shi, Ran ;
Wei, Weijie .
NEUROCOMPUTING, 2019, 368 :180-187
[36]   Contrast-Oriented Deep Neural Networks for Salient Object Detection [J].
Li, Guanbin ;
Yu, Yizhou .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (12) :6038-6051
[37]   Motion Guided Attention for Video Salient Object Detection [J].
Li, Haofeng ;
Chen, Guanqi ;
Li, Guanbin ;
Yu, Yizhou .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7273-7282
[38]   Saliency Detection on Light Field [J].
Li, Nianyi ;
Ye, Jinwei ;
Ji, Yu ;
Ling, Haibin ;
Yu, Jingyi .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2806-2813
[39]   A Plug-and-Play Scheme to Adapt Image Saliency Deep Model for Video Data [J].
Li, Yunxiao ;
Li, Shuai ;
Chen, Chenglizhao ;
Hao, Aimin ;
Qin, Hong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (06) :2315-2327
[40]   Accurate and Robust Video Saliency Detection via Self-Paced Diffusion [J].
Li, Yunxiao ;
Li, Shuai ;
Chen, Chenglizhao ;
Hao, Aimin ;
Qin, Hong .
IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (05) :1153-1167