Interpretable machine learning for perturbation biology

被引:0
|
作者
Shen, Judy [1 ]
Yuan, Bo [1 ]
Luna, Augustin [1 ]
Korkut, Anil [2 ]
Marks, Debora [1 ]
Ingraham, John [3 ]
Sander, Chris [1 ]
机构
[1] Harvard Univ, Boston, MA 02115 USA
[2] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
[3] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.1158/1538-7445.AM2020-2102
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2102
引用
收藏
页数:2
相关论文
共 50 条
  • [1] CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy
    Yuan, Bo
    Shen, Ciyue
    Luna, Augustin
    Korkut, Anil
    Marks, Debora S.
    Ingraham, John
    Sander, Chris
    CELL SYSTEMS, 2021, 12 (02) : 128 - +
  • [2] Interpretable Machine Learning
    Chen V.
    Li J.
    Kim J.S.
    Plumb G.
    Talwalkar A.
    Queue, 2021, 19 (06): : 28 - 56
  • [3] Interpretable machine learning methods for predictions in systems biology from omics data
    Sidak, David
    Schwarzerova, Jana
    Weckwerth, Wolfram
    Waldherr, Steffen
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [4] Interpretable machine learning assessment
    Han, Henry
    Wu, Yi
    Wang, Jiacun
    Han, Ashley
    NEUROCOMPUTING, 2023, 561
  • [5] Algorithms for Interpretable Machine Learning
    Rudin, Cynthia
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1519 - 1519
  • [6] Interpretable machine learning for genomics
    Watson, David S.
    HUMAN GENETICS, 2022, 141 (09) : 1499 - 1513
  • [7] Interpretable machine learning for genomics
    David S. Watson
    Human Genetics, 2022, 141 : 1499 - 1513
  • [8] Techniques for Interpretable Machine Learning
    Du, Mengnan
    Li, Ninghao
    Hu, Xia
    COMMUNICATIONS OF THE ACM, 2020, 63 (01) : 68 - 77
  • [9] Interpretable Machine Learning for TabPFN
    Rundel, David
    Kobialka, Julius
    von Crailsheim, Constantin
    Feurer, Matthias
    Nagler, Thomas
    Ruegamer, David
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 465 - 476
  • [10] Interpretable Machine Learning in Healthcare
    Ahmad, Muhammad Aurangzeb
    Eckert, Carly
    Teredesai, Ankur
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 447 - 447