Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions

被引:46
作者
Verma, Anjali [1 ]
Jiwari, Ram [2 ]
Koksal, Mehmet Emir [3 ]
机构
[1] Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[3] Mevlana Univ, Dept Primary Math Educ, TR-42003 Selcuklu, Konya, Turkey
关键词
nonlinear diffusion equations; Lie classical method; symmetry reduction; differential quadrature method; errors; DIFFERENTIAL QUADRATURE METHOD; FISHERS EQUATION; WAVE SOLUTIONS; SIMULATION;
D O I
10.1186/1687-1847-2014-229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the authors study analytic and numerical solutions of nonlinear diffusion equations of Fisher's type with the help of classical Lie symmetry method. Lie symmetries are used to reduce the equations into ordinary differential equations (ODEs). Lie group classification with respect to time dependent coefficient and optimal system of one-dimensional sub-algebras is obtained. Then sub-algebras are used to construct symmetry reduction and analytic solutions. Finally, numerical solutions of nonlinear diffusion equations are obtained by using one of the differential quadrature methods.
引用
收藏
页数:13
相关论文
共 33 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]   Numerical study of Fisher's reaction-diffusion equation by the Sinc collocation method [J].
Al-Khaled, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 137 (02) :245-255
[3]  
[Anonymous], 2001, SIAM J SCI COMPUT
[4]  
Brazhnik P. K., 1999, SIAM Journal on Applied Mathematics, V60, P371
[5]   NONLINEAR DIFFUSION EQUATION DESCRIBING POPULATION-GROWTH [J].
CANOSA, J .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (04) :307-313
[6]  
Carey G., 1995, Numer. Methods Partial, V11, P175, DOI [10.1002/num.1690110206, DOI 10.1002/NUM.1690110206]
[7]   DIFFERENTIAL QUADRATURE FOR MULTI-DIMENSIONAL PROBLEMS [J].
CIVAN, F ;
SLIEPCEVICH, CM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 101 (02) :423-443
[8]  
Evans D. J., 1989, Annu. Rev. Heat Transf., V2, P283, DOI [10.1615/AnnualRevHeatTransfer.v2.100, DOI 10.1615/ANNUALREVHEATTRANSFER.V2.100]
[9]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[10]   NUMERICAL SOLUTION OF FISHERS EQUATION [J].
GAZDAG, J ;
CANOSA, J .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (03) :445-457