Ensemble feature analysis classifier for sentiment analysis using convolutional neural networks

被引:0
|
作者
Arunasafali, M. [1 ]
Suneetha, Chittineni [2 ]
机构
[1] Acharya Nagarjuna Univ, Dept Comp Sci & Engg, Guntur, India
[2] Rvr & Jc Coll Engn, Guntur, India
关键词
NLP; TSA; SAE; EFAC; MODEL;
D O I
10.1088/1742-6596/1228/1/012009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text mining is the worldwide fast growing domain in research. Sentiment analysis is the one of the sub domain in the text mining to extract the sentiment from the various texts available in the internet and from other sources. Various existing systems are implemented to get the sentiment analysis with the migration of natural language processing algorithms (NLP) and artificial intelligence algorithms. Various issues identified in the text mining with sentiment analysis are solved very rarely. According to the previous research, deep-learning and artificial intelligencebased TSA prediction method that comprises of a stacked auto encoder (SAE) model that is used to learn generic linguistic and text semantic features But the system not reached up to the mark. In this paper, Ensemble Feature Analysis Classifier to incorporate the new domain dimension within the rating and text based sentiment analyzer. Implementation of this proposed prototype validates our claim and highlights our efficiency in supporting multiple dimensions during sentiment analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Twitter Sentiment Analysis with Deep Convolutional Neural Networks
    Severyn, Aliaksei
    Moschitti, Alessandro
    SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 959 - 962
  • [12] Sentiment Lexical-Augmented Convolutional Neural Networks for Sentiment Analysis
    Yin, Rongchao
    Li, Peng
    Wang, Bin
    2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 630 - 635
  • [13] Sentiment Analysis Using Convolutional Neural Network
    Ouyang, Xi
    Zhou, Pan
    Li, Cheng Hua
    Liu, Lijun
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 2363 - 2368
  • [14] Hybrid Method for Sentiment Analysis Using Homogeneous Ensemble Classifier
    Murni
    Handhika, Tri
    Fahrurozi, A.
    Sari, Ilmiyati
    Lestari, Dewi P.
    Zen, Revaldo Ilfestra Metzi
    2019 2ND INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2019): ARTIFICIAL INTELLIGENCE ROLES IN INDUSTRIAL REVOLUTION 4.0, 2019, : 232 - 236
  • [15] Sentiment classification using hybrid feature selection and ensemble classifier
    Jain, Achin
    Jain, Vanita
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 659 - 668
  • [16] VISUAL AND TEXTUAL SENTIMENT ANALYSIS USING DEEP FUSION CONVOLUTIONAL NEURAL NETWORKS
    Chen, Xingyue
    Wang, Yunhong
    Liu, Qingjie
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1557 - 1561
  • [17] Visual and Textual Sentiment Analysis of a Microblog Using Deep Convolutional Neural Networks
    Yu, Yuhai
    Lin, Hongfei
    Meng, Jiana
    Zhao, Zhehuan
    ALGORITHMS, 2016, 9 (02)
  • [18] Ensemble of Artificial Neural Networks for Aspect Based Sentiment Analysis
    Onaciu, Andreca
    Marginean, Anca Nicoleta
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 13 - 19
  • [19] Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets
    Segura-Bedmar, Isabel
    Quiros, Antonio
    Martinez, Paloma
    15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 1014 - 1022
  • [20] Text Sentiment Analysis based on BERT and Convolutional Neural Networks
    Huang, P.
    Zhu, H. J.
    Zheng, L.
    Wang, Y.
    2021 5TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2021, 2021, : 1 - 7