High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images

被引:60
作者
Laramy, Christine R. [1 ,3 ]
Brown, Keith A. [2 ,3 ]
O'Brien, Matthew N. [2 ]
Mirkin, Chad. A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
关键词
electron microscopy; nanoparticles; image analysis; high-throughput; automated; GOLD NANORODS; SHAPE CONTROL; OPTICAL-PROPERTIES; NANOSCALE FORCES; NANOCRYSTALS; SIZE; GROWTH; NANOSTRUCTURES; SUPERLATTICES; PLASMONICS;
D O I
10.1021/acsnano.5b05968
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron microscopy (EM) represents the most powerful tool to directly characterize the structure of individual nanoparticles. Accurate descriptions of nanoparticle populations with EM, however, are currently limited by the lack of tools to quantitatively analyze populations in a high-throughput manner. Herein, we report a computational method to algorithmically analyze EM images that allows for the first automated structural quantification of heterogeneous nanostructure populations, with species that differ in both size and shape. This allows one to accurately describe nanoscale structure at the bulk level, analogous to ensemble measurements with individual particle resolution. With our described EM protocol and our inclusion of freely available code for our algorithmic analysis, we aim to standardize EM characterization of nanostructure populations to increase reproducibility, objectivity, and throughput in measurements. We believe this work will have significant implications in diverse research areas involving nanomaterials, including, but not limited to, fundamental studies of structural control in nanoparticle synthesis, nanomaterial-based therapeutics and diagnostics, optoelectronics, and catalysis.
引用
收藏
页码:12488 / 12495
页数:8
相关论文
共 50 条
[41]   Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis [J].
Silvestri, Ludovico ;
Paciscopi, Marco ;
Soda, Paolo ;
Biamonte, Filippo ;
Iannello, Giulio ;
Frasconi, Paolo ;
Pavone, Francesco S. .
FRONTIERS IN NEUROANATOMY, 2015, 9
[42]   High-throughput, microscopy-based screening and quantification of genetic elements [J].
Zhang, Rongrong ;
Huang, Yajia ;
Li, Mei ;
Wang, Lei ;
Li, Bing ;
Xia, Aiguo ;
Li, Ye ;
Yang, Shuai ;
Jin, Fan .
MLIFE, 2023, 2 (04) :450-461
[43]   UV measurements in microplates suitable for high-throughput protein determination [J].
Kreusch, S ;
Schwedler, S ;
Tautkus, B ;
Cumme, GA ;
Horn, A .
ANALYTICAL BIOCHEMISTRY, 2003, 313 (02) :208-215
[44]   High-Throughput Fabrication and Screening Improves Gold Nanoparticle Chemiresistor Sensor Performance [J].
Hubble, Lee J. ;
Cooper, James S. ;
Sosa-Pintos, Andrea ;
Kiiveri, Harri ;
Chow, Edith ;
Webster, Melissa S. ;
Wieczorek, Lech ;
Raguse, Burkhard .
ACS COMBINATORIAL SCIENCE, 2015, 17 (02) :120-129
[45]   A universal homogeneous assay for high-throughput determination of binding kinetics [J].
Schiele, Felix ;
Ayaz, Pelin ;
Fernandez-Montalvan, Amaury .
ANALYTICAL BIOCHEMISTRY, 2015, 468 :42-49
[46]   Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries [J].
Goodman, Jonathan T. ;
Mullis, Adam S. ;
Dunshee, Lucas ;
Mitra, Akash ;
Narasimhan, Balaji .
ACS COMBINATORIAL SCIENCE, 2018, 20 (05) :298-307
[47]   Deep Learning Image Analysis of High-Throughput Toxicology Assay Images [J].
Tandon, Arpit ;
Howard, Brian ;
Ramaiahgari, Sreenivasa ;
Maharana, Adyasha ;
Ferguson, Stephen ;
Shah, Ruchir ;
Merrick, B. Alex .
SLAS DISCOVERY, 2022, 27 (01) :29-38
[48]   High-throughput determination of dry mass of single bacterial cells by ultrathin membrane resonators [J].
Sanz-Jimenez, Adrian ;
Malvar, Oscar ;
Ruz, Jose J. ;
Garcia-Lopez, Sergio ;
Kosaka, Priscila M. ;
Gil-Santos, Eduardo ;
Cano, Alvaro ;
Papanastasiou, Dimitris ;
Kounadis, Diamantis ;
Mingorance, Jesus ;
Paulo, alvaro San ;
Calleja, Montserrat ;
Tamayo, Javier .
COMMUNICATIONS BIOLOGY, 2022, 5 (01)
[49]   Programmable Nanoparticle Ensembles via High-Throughput Directed Self-Assembly [J].
Dai, Qiu ;
Chen, Yingyu ;
Liu, Chi-Chun ;
Rettner, Charles T. ;
Holmdahl, Bryan ;
Gleixner, Stacy ;
Chung, Richard ;
Pitera, Jed W. ;
Cheng, Joy ;
Nelson, Alshakim .
LANGMUIR, 2013, 29 (11) :3567-3574
[50]   Design, expression, and purification of a Flaviviridae polymerase using a high-throughput approach to facilitate crystal structure determination [J].
Choi, KH ;
Groarke, JM ;
Young, DC ;
Rossmann, MG ;
Pevear, DC ;
Kuhn, RJ ;
Smith, JL .
PROTEIN SCIENCE, 2004, 13 (10) :2685-2692