Derivations in differentially prime rings

被引:4
作者
Al Khalaf, Ahmad [1 ]
Artemovych, Orest D. [2 ]
Taha, Iman [3 ]
机构
[1] Ibn Saud Islamic Univ, Coll Sci Al Imam Mohammad, Dept Math, POB 90950, Riyadh, Saudi Arabia
[2] Cracow Univ Technol, Inst Math, Ul Warszawska 24, PL-31155 Krakow, Poland
[3] Elect Univ, 4508 Prince Sand Bin Mohammed Bin Muqrin Rd, Riyadh 13316, Saudi Arabia
关键词
Derivation; prime ring; Lie ring; LIE-RINGS; COMMUTATIVE RINGS; IDEALS;
D O I
10.1142/S0219498818501293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Earlier properties of Lie rings DerR of derivations in commutative differentially prime rings R was investigated by many authors. We study Lie rings DerR in the non-commutative case and shown that if R is a D-prime ring of characteristic not equal 2, then D is a prime Lie ring or R is a commutative ring.
引用
收藏
页数:12
相关论文
共 20 条
[1]  
Artemovych OD., 1998, PERIOD MATH HUNG, V36, P1, DOI DOI 10.1023/A:1004648818462
[2]  
Artemovych OD, 2015, ALGEBRA DISCRET MATH, V20, P13
[3]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[4]  
Bresar M., 2007, FUNCTIONAL IDENTITIE
[5]  
Carini L, 1985, REND CIRC MAT PALERM, V34
[6]   Prime Lie rings of derivations of commutative rings [J].
Chebotar, Mikhail A. ;
Lee, Pjek-Hwee .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (12) :4339-4344
[7]   GOLDIE THEOREM FOR DIFFERENTIABLY PRIME RINGS [J].
FISHER, JR .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) :71-77
[8]  
Herstein I.N., 1979, Canad. Math. Bull., V22, P509, DOI 10.4153/CMB-1979-066-2
[9]  
Herstein I. N., 1994, CARUS MATH MONOGRAPH, V15
[10]   ON THE LIE AND JORDAN RINGS OF A SIMPLE ASSOCIATIVE RING [J].
HERSTEIN, IN .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (02) :279-285