Glioblastoma Immunotherapy Targeting the Innate Immune Checkpoint CD47-SIRPα Axis

被引:44
作者
Hu, Jinyang [1 ]
Xiao, Qungen [1 ]
Dong, Minhai [1 ]
Guo, Dongsheng [1 ]
Wu, Xudong [2 ,3 ,4 ]
Wang, Baofeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tong Med Coll, Tongji Hosp, Dept Neurosurg, Wuhan, Peoples R China
[2] Tianjin Med Univ, Tianjin Key Lab Med Epigenet, Collaborat Innovat Ctr Tianjin Med Epigenet 2011, Dept Cell Biol, Tianjin, Peoples R China
[3] Tianjin Med Univ Gen Hosp, Dept Neurosurg, Tianjin, Peoples R China
[4] Tianjin Neurol Inst, Lab Neurooncol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
glioblastoma; immune checkpoint; CD47-SIRPα tumor-associated macrophages; microglia; glioblastoma microenvironment; TUMOR-ASSOCIATED MACROPHAGES; T-CELL; SIRP-ALPHA; CD47; EXPRESSION; CANCER-CELLS; ANTIBODY; ACTIVATION; INHIBITION; PHAGOCYTOSIS; BLOCKADE;
D O I
10.3389/fimmu.2020.593219
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Glioblastoma Multiforme (GBM) is the most common and aggressive form of intracranial tumors with poor prognosis. In recent years, tumor immunotherapy has been an attractive strategy for a variety of tumors. Currently, most immunotherapies take advantage of the adaptive anti-tumor immunity, such as cytotoxic T cells. However, the predominant accumulation of tumor-associated microglia/macrophages (TAMs) results in limited success of these strategies in the glioblastoma. To improve the immunotherapeutic efficacy for GBM, it is detrimental to understand the role of TAM in glioblastoma immunosuppressive microenvironment. In this review, we will discuss the roles of CD47-SIRP alpha axis in TAMs infiltration and activities and the promising effects of targeting this axis on the activation of both innate and adaptive antitumor immunity in glioblastoma.
引用
收藏
页数:7
相关论文
共 77 条
[1]   CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J].
Advani, Ranjana ;
Flinn, Ian ;
Popplewell, Leslie ;
Forero, Andres ;
Bartlett, Nancy L. ;
Ghosh, Nilanjan ;
Kline, Justin ;
Roschewski, Mark ;
LaCasce, Ann ;
Collins, Graham P. ;
Thu Tran ;
Lynn, Judith ;
Chen, James Y. ;
Volkmer, Jens-Peter ;
Agoram, Balaji ;
Huang, Jie ;
Majeti, Ravindra ;
Weissman, Irving L. ;
Takimoto, Chris H. ;
Chao, Mark P. ;
Smith, Sonali M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (18) :1711-1721
[2]   Challenges to curing primary brain tumours [J].
Aldape, Kenneth ;
Brindle, Kevin M. ;
Chesler, Louis ;
Chopra, Rajesh ;
Gajjar, Amar ;
Gilbert, Mark R. ;
Gottardo, Nicholas ;
Gutmann, David H. ;
Hargrave, Darren ;
Holland, Eric C. ;
Jones, David T. W. ;
Joyce, Johanna A. ;
Kearns, Pamela ;
Kieran, Mark W. ;
Mellinghoff, Ingo K. ;
Merchant, Melinda ;
Pfister, Stefan M. ;
Pollard, Steven M. ;
Ramaswamy, Vijay ;
Rich, Jeremy N. ;
Robinson, Giles W. ;
Rowitch, David H. ;
Sampson, John H. ;
Taylor, Michael D. ;
Workman, Paul ;
Gilbertson, Richard J. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (08) :509-520
[3]   Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity [J].
Baer, Caroline ;
Squadrito, Mario Leonardo ;
Laoui, Damya ;
Thompson, Danielle ;
Hansen, Sarah K. ;
Kiialainen, Anna ;
Hoves, Sabine ;
Ries, Carola H. ;
Ooi, Chia-Huey ;
De Palma, Michele .
NATURE CELL BIOLOGY, 2016, 18 (07) :790-+
[4]   In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Pisapia, Jared ;
Martinez-Lage, Maria ;
Rozycki, Martin ;
Rathore, Saima ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4724-4734
[5]   Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma [J].
Berghoff, Anna Sophie ;
Kiesel, Barbara ;
Widhalm, Georg ;
Rajky, Orsolya ;
Ricken, Gerda ;
Woehrer, Adelheid ;
Dieckmann, Karin ;
Filipits, Martin ;
Brandstetter, Anita ;
Weller, Michael ;
Kurscheid, Sebastian ;
Hegi, Monika E. ;
Zielinski, Christoph C. ;
Marosi, Christine ;
Hainfellner, Johannes A. ;
Preusser, Matthias ;
Wick, Wolfgang .
NEURO-ONCOLOGY, 2015, 17 (08) :1064-1075
[6]  
Boukhari A, 2015, ANTICANCER RES, V35, P149
[7]   Integrin-associated protein (CD47) and its ligands [J].
Brown, EJ ;
Frazier, WA .
TRENDS IN CELL BIOLOGY, 2001, 11 (03) :130-135
[8]   MYC regulates the antitumor immune response through CD47 and PD-L1 [J].
Casey, Stephanie C. ;
Tong, Ling ;
Li, Yulin ;
Do, Rachel ;
Walz, Susanne ;
Fitzgerald, Kelly N. ;
Gouw, Arvin M. ;
Baylot, Virginie ;
Guetgemann, Ines ;
Eilers, Martin ;
Felsher, Dean W. .
SCIENCE, 2016, 352 (6282) :227-231
[9]   The CD47 pathway is deregulated in human immune thrombocytopenia [J].
Catani, Lucia ;
Sollazzo, Daria ;
Ricci, Francesca ;
Polverelli, Nicola ;
Palandri, Francesca ;
Baccarani, Michele ;
Vianelli, Nicola ;
Lemoli, Roberto M. .
EXPERIMENTAL HEMATOLOGY, 2011, 39 (04) :486-494
[10]  
Chandramohan V, 2013, FUTURE ONCOL, V9, P977, DOI [10.2217/fon.13.47, 10.2217/FON.13.47]