In situ synthesis of a CoSb3/nano-carbon-web anode for Li-ion batteries

被引:9
作者
Mi, C. H. [1 ]
Cao, Y. X. [2 ]
Zhang, X. G. [1 ]
Li, H. L. [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450052, Peoples R China
关键词
CoSb3; In situ synthesis; Li-insertion property; Cyclic voltammetry; RECHARGEABLE LITHIUM BATTERIES; INSERTION; CARBON; SYSTEM;
D O I
10.1016/j.ssc.2009.02.032
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A CoSb3/nano-carbon-web composite was synthesized by an in situ method using polypropylene as both the reductive agent and carbon source. Hydrogen and carbon from the pyrolysis of polypropylene provide a strong reductive atmosphere and ensure the reduction of Co2+ (and Sb3+) to form CoSb3, and the residual carbon would in situ wrap around the freshly crystallized CoSb3. Electrochemical measurements show that CoSb3/nano-carbon-web as Li-ion battery anode reaches an initial charge capacity of 770 mA hg(-1) and remains above 430 mA hg(-1) after 20 cycles. The in situ synthesis route has the potential as a general method for the preparation of other metal (or alloy)/nano-carbon-web composites. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:781 / 783
页数:3
相关论文
共 16 条
[1]   DIRECTIONS IN SECONDARY LITHIUM BATTERY RESEARCH-AND-DEVELOPMENT [J].
ABRAHAM, KM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1233-1248
[2]   Electrochemical reaction of lithium with the CoSb3 skutterudite [J].
Alcántara, R ;
Fernández-Madrigal, FJ ;
Lavela, P ;
Tirado, JL ;
Jumas, JC ;
Olivier-Fourcade, J .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (10) :2517-2521
[3]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[4]   Lithium insertion mechanism in CoSb3 analysed by 121Sb Mossbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations [J].
Devos, I ;
Womes, M ;
Heilemann, M ;
Olivier-Fourcade, J ;
Jumas, JC ;
Tirado, JL .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (11) :1759-1767
[5]   High-capacity carbons prepared from acrylonitrile-butadiene-styrene terpolymer for use as an anode material in lithium-ion batteries [J].
Fey, GTK ;
Lee, DC ;
Lin, YY .
JOURNAL OF POWER SOURCES, 2003, 119 :39-44
[6]   The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries [J].
Grigoriants, I ;
Sominski, L ;
Li, HL ;
Ifargan, I ;
Aurbach, D ;
Gedanken, A .
CHEMICAL COMMUNICATIONS, 2005, (07) :921-923
[7]   Thermoelectric properties of indium-filled skutterudites [J].
He, T ;
Chen, JZ ;
Rosenfeld, HD ;
Subramanian, MA .
CHEMISTRY OF MATERIALS, 2006, 18 (03) :759-762
[8]   A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion [J].
Holzapfel, M ;
Buqa, H ;
Scheifele, W ;
Novák, P ;
Petrat, FM .
CHEMICAL COMMUNICATIONS, 2005, (12) :1566-1568
[9]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[10]   Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J].
Kepler, KD ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 1999, 81 :383-387