ISOLATION AND IDENTIFICATION OF RHIZOBACTERIA FROM MAIZE (ZEA MAYS L.) IN LUVISOLS AND DOCUMENTATION THEIR PLANT GROWTH PROMOTING TRAITS

被引:6
|
作者
Javorekova, Sona [1 ]
Cinkocki, Renata [1 ]
Makova, Jana [1 ]
Hricakova, Nikola [1 ]
机构
[1] Slovak Univ Agr, Fac Biotechnol & Food Sci, Dept Microbiol, Trieda Andreja Hlinku 2, Nitra 94976, Slovakia
关键词
rhizobacteria; indole-3-acetic acid; siderophores; phosphate solubilization; antifungal activity; Zea mays L; Bacillus sp; luvisols; PHOSPHATE-SOLUBILIZING BACTERIA; BACILLUS-ALTITUDINIS; INORGANIC PHOSPHATES; SOIL; SIDEROPHORE; STRAINS; STRESS; PGPR; IRON; ENHANCEMENT;
D O I
10.15414/jmbfs.2020.10.3.505-510
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
There is a growing interest in the issue of inoculation of rhizobacteria into the agricultural soil because this group of bacteria can increase productivity and quality of agriculturally important crops and contributes to the stability of agroecosystems. The aim of our work was to isolate and characterize of plant growth promoting traits (production of IAA, siderophores, phosphate solubilisation, antifungal activity) of rhizobacteria belonging to a group of plant growth promoting rhizobacteria (PGPR), from rhizosphere of maize (Zea mays L.) in luvisols. Quantitative representation of rhizobacteria of maize rhizosphere was 7.4 . 10(6) CFU.g(-1) dry soil. A total of eleven species of maize rhizosphere where isolated and confirmed as PGPR in vitro. The all isolates showed positive indole-3-acetic acid (IAA) production ranging between 1.39 and 15.74 mu g.ml(-1). Seven strains (63.6 %) has been shown with low and 1 strain with intermediate solubilisation index of phosphates and the positive production of siderophores showed 7 isolates (63, 6 %). Except for the isolate KmiJP17B089, all others inhibited the growth of Sclerotinia sclerotiorum and Rhizoctonia solani by more than 50 %. In the case of Fusarium graminearum, on the other hand, we observed a very low inhibitory activity. Three isolates which were the most active in observed traits were identified by the 16S rRNA gene sequencing and by BLAST alignment of NCBI database as Bacillus altitudinis strain KmiJP17B089, Bacillus aryabhattai strain KmiJP17B090 and Bacillus megaterium strain KmiJP17B091. These results suggest the possibility of in vitro testing of these Bacillus species as potential biological fertilizer to increase maize production.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [1] Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.)
    Zahid, Mahwish
    Abbasi, M. Kaleem
    Hameed, Sohail
    Rahim, Nasir
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [2] Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea mays L.) Rhizosphere
    Bjelic, Dragana
    Marinkovic, Jelena
    Tintor, Branislava
    Mrkovacki, Nastasija
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2018, 49 (01) : 88 - 98
  • [3] Growth Promotion of Maize (Zea mays L.) by Plant-Growth-Promoting Rhizobacteria under Field Conditions
    Gholami, Ahmad
    Biyari, Atena
    Gholipoor, Manoochehr
    Rahmani, Hadi Asadi
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2012, 43 (09) : 1263 - 1272
  • [4] Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth
    Ercole, Tairine G.
    Savi, Daiani C.
    Adamoski, Douglas
    Kava, Vanessa M.
    Hungria, Mariangela
    Galli-Terasawa, Lygia, V
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2021, 52 (04) : 1807 - 1823
  • [5] Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth
    Tairine G. Ercole
    Daiani C. Savi
    Douglas Adamoski
    Vanessa M. Kava
    Mariangela Hungria
    Lygia V. Galli-Terasawa
    Brazilian Journal of Microbiology, 2021, 52 : 1807 - 1823
  • [6] Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity
    Ullah, Sami
    Bano, Asghari
    CANADIAN JOURNAL OF MICROBIOLOGY, 2015, 61 (04) : 307 - 313
  • [7] Isolation of low temperature surviving plant growth - promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits
    Meena, Rajesh Kumar
    Singh, Ramesh Kumar
    Singh, Norang Pal
    Meena, Sunita Kumari
    Meena, Vijay Singh
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2015, 4 (04) : 806 - 811
  • [8] RESPONSE OF MAIZE (Zea mays L.) CROP TO BIOFERTILIZATION WITH PLANT GROWTH PROMOTING RHIZOBACTERIA AND CHITOSAN UNDER FIELD CONDITIONS
    Agbodjato, Nadege A.
    Noumavo, Pacome A.
    Adjanohoun, Adolphe
    Dagbenonbakin, Gustave
    Atta, Mohamed
    Falcon Rodriguez, Alejandro
    de la Noval Pons, Blanca M.
    Baba-Moussa, Lamine
    JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES, 2015, 3 (06): : 566 - 574
  • [9] Effects of seed priming with Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield attributes of maize (Zea mays L.) hybrids
    Sharifi, Raouf Seyed
    Khavazi, Kazem
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (3-4): : 496 - 500
  • [10] Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria
    Moreira, Helena
    Marques, Ana P. G. C.
    Franco, Albina R.
    Rangel, Antonio O. S. S.
    Castro, Paula M. L.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (16) : 9742 - 9753