Relative entropy and error bounds for filtering of Markov processes

被引:20
作者
Clark, JMC [1 ]
Ocone, DL
Coumarbatch, C
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect Engn, London SW7 2BT, England
[2] Rutgers State Univ, Hill Ctr, Dept Math, Piscataway, NJ 08854 USA
关键词
relative entropy; nonlinear filtering; filtering error bounds; asymptotic filter stability; incorrectly initialized filter;
D O I
10.1007/PL00009856
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the relative entropy between the conditional distribution and an incorrectly initialized filter far the estimation of one component of a Markov process given observations of the second component. Using the Markov property ae first establish a decomposition of the relative entropy between the measures on observation path space associated to different initial conditions. Using this decomposition, it is shown that the relative entropy of the optimal filter relative to an incorrectly initialized filter is a positive supermartingale. By applying the decomposition to signals observed in additive, white noise, a relative entropy bound is obtained on the integrated, expected, mean square difference between the optimal and incorrectly initialized estimates of the observation function.
引用
收藏
页码:346 / 360
页数:15
相关论文
共 50 条
  • [31] On filtering of Markov chains in strong noise
    Chigansky, Pavel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4267 - 4272
  • [32] Entropy for semi-Markov processes with Borel state spaces: asymptotic equirepartition properties and invariance principles
    Girardin, Valerie
    Limnios, Nikolaos
    [J]. BERNOULLI, 2006, 12 (03) : 515 - 533
  • [33] Mutual Information, Relative Entropy, and Estimation in the Poisson Channel
    Atar, Rami
    Weissman, Tsachy
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 708 - 712
  • [34] Mutual Information, Relative Entropy, and Estimation in the Poisson Channel
    Atar, Rami
    Weissman, Tsachy
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) : 1302 - 1318
  • [35] Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes
    Galtier, Mathieu N.
    Marini, Camille
    Wainrib, Gilles
    Jaeger, Herbert
    [J]. NEURAL NETWORKS, 2014, 56 : 10 - 21
  • [36] Entropy Production for Quantum Markov Semigroups
    Franco Fagnola
    Rolando Rebolledo
    [J]. Communications in Mathematical Physics, 2015, 335 : 547 - 570
  • [37] The Markov gap for geometric reflected entropy
    Hayden, Patrick
    Parrikar, Onkar
    Sorce, Jonathan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (10)
  • [38] Bounds on the Bayes Error Given Moments
    Frigyik, Bela A.
    Gupta, Maya R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (06) : 3606 - 3612
  • [39] Non-linear filtering for Markov stochastic processes, using higher-order statistics (HOS) approach
    Kontorovitch, VY
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) : 3165 - 3170
  • [40] Parametric Bayesian Estimation of Differential Entropy and Relative Entropy
    Gupta, Maya
    Srivastava, Santosh
    [J]. ENTROPY, 2010, 12 (04) : 818 - 843