Relative entropy and error bounds for filtering of Markov processes

被引:20
作者
Clark, JMC [1 ]
Ocone, DL
Coumarbatch, C
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect Engn, London SW7 2BT, England
[2] Rutgers State Univ, Hill Ctr, Dept Math, Piscataway, NJ 08854 USA
关键词
relative entropy; nonlinear filtering; filtering error bounds; asymptotic filter stability; incorrectly initialized filter;
D O I
10.1007/PL00009856
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the relative entropy between the conditional distribution and an incorrectly initialized filter far the estimation of one component of a Markov process given observations of the second component. Using the Markov property ae first establish a decomposition of the relative entropy between the measures on observation path space associated to different initial conditions. Using this decomposition, it is shown that the relative entropy of the optimal filter relative to an incorrectly initialized filter is a positive supermartingale. By applying the decomposition to signals observed in additive, white noise, a relative entropy bound is obtained on the integrated, expected, mean square difference between the optimal and incorrectly initialized estimates of the observation function.
引用
收藏
页码:346 / 360
页数:15
相关论文
共 50 条
  • [21] RELATIVE ENTROPY AND RELATIVE CONDITIONAL ENTROPY WITH INFINITE PARTITIONS
    Asadiyan, Mohamad Hosein
    Ebrahimzadeh, Abolfazl
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 319 - 326
  • [22] Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes
    Khazen, Ellida M.
    COGENT MATHEMATICS, 2016, 3
  • [23] Upper Bounds on the Relative Entropy and Renyi Divergence as a Function of Total Variation Distance for Finite Alphabets
    Sason, Igal
    Verdu, Sergio
    2015 IEEE INFORMATION THEORY WORKSHOP - FALL (ITW), 2015, : 214 - 218
  • [24] Robust State Space Filtering Under Incremental Model Perturbations Subject to a Relative Entropy Tolerance
    Levy, Bernard C.
    Nikoukhah, Ramine
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) : 682 - 695
  • [25] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Zhoubo Duan
    Lifang Niu
    Yangyang Wang
    Liang Liu
    International Journal of Theoretical Physics, 2017, 56 : 1929 - 1936
  • [26] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Duan, Zhoubo
    Niu, Lifang
    Wang, Yangyang
    Liu, Liang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1929 - 1936
  • [27] Relative entropy in CFT
    Longo, Roberto
    Xu, Feng
    ADVANCES IN MATHEMATICS, 2018, 337 : 139 - 170
  • [28] On Relative Entropy Maximum Entropy and design of questionnaires
    Chibat, Ahmed
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 206 - 212
  • [29] Gibbs–Jaynes Entropy Versus Relative Entropy
    M. Meléndez
    P. Español
    Journal of Statistical Physics, 2014, 155 : 93 - 105
  • [30] Tight Bound on Relative Entropy by Entropy Difference
    Reeb, David
    Wolf, Michael M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) : 1458 - 1473