Robust carbon dioxide reduction on molybdenum disulphide edges

被引:665
作者
Asadi, Mohammad [1 ]
Kumar, Bijandra [1 ]
Behranginia, Amirhossein [1 ]
Rosen, Brian A. [2 ]
Baskin, Artem [3 ]
Repnin, Nikita [3 ]
Pisasale, Davide [1 ]
Phillips, Patrick [4 ]
Zhu, Wei [5 ]
Haasch, Richard [6 ]
Klie, Robert F. [4 ]
Kral, Petr [3 ,4 ]
Abiade, Jeremiah [1 ]
Salehi-Khojin, Amin [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[4] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[5] Dioxide Mat, Champaign, IL 61820 USA
[6] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
HYDROGEN-EVOLUTION; ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; MOS2; CATALYST; ELECTRODES; SITES;
D O I
10.1038/ncomms5470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical reduction of carbon dioxide has been recognized as an efficient way to convert carbon dioxide to energy-rich products. Noble metals (for example, gold and silver) have been demonstrated to reduce carbon dioxide at moderate rates and low overpotentials. Nevertheless, the development of inexpensive systems with an efficient carbon dioxide reduction capability remains a challenge. Here we identify molybdenum disulphide as a promising cost-effective substitute for noble metal catalysts. We uncover that molybdenum disulphide shows superior carbon dioxide reduction performance compared with the noble metals with a high current density and low overpotential (54 mV) in an ionic liquid. Scanning transmission electron microscopy analysis and first principle modelling reveal that the molybdenum-terminated edges of molybdenum disulphide are mainly responsible for its catalytic performance due to their metallic character and a high d-electron density. This is further experimentally supported by the carbon dioxide reduction performance of vertically aligned molybdenum disulphide.
引用
收藏
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[3]   Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons [J].
Botello-Mendez, A. R. ;
Lopez-Urias, F. ;
Terrones, M. ;
Terrones, H. .
NANOTECHNOLOGY, 2009, 20 (32)
[4]   Leads and Lags at the End of the Last Ice Age [J].
Brook, Edward J. .
SCIENCE, 2013, 339 (6123) :1042-1043
[5]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[7]   Catalytic properties of single layers of transition metal sulfide catalytic materials [J].
Chianelli, Russell R. ;
Siadati, Mohammad H. ;
De la Rosa, Myriam Perez ;
Berhault, Gilles ;
Wilcoxon, Jess P. ;
Bearden, Roby, Jr. ;
Abrams, Billie L. .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2006, 48 (01) :1-41
[8]   Future CO2 Emissions and Climate Change from Existing Energy Infrastructure [J].
Davis, Steven J. ;
Caldeira, Ken ;
Matthews, H. Damon .
SCIENCE, 2010, 329 (5997) :1330-1333
[9]  
DuBois D., 2007, Encyclopedia of Electrochemistry
[10]   MOLECULAR VOLUMES AND STOKES-EINSTEIN EQUATION [J].
EDWARD, JT .
JOURNAL OF CHEMICAL EDUCATION, 1970, 47 (04) :261-&