Additive maps preserving local spectrum

被引:54
作者
Bourhim, Abdellatif [1 ]
Ransford, Thomas [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
关键词
local spectrum; single-valued extension property;
D O I
10.1007/s00020-005-1392-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a complex Banach space, and let L(X) be the space of bounded operators on X. Given T is an element of L(X) and x is an element of X, denote by sigma(T)(x) the local spectrum of T at x. We prove that if Phi : L(X) -> L(X) is an additive map such that sigma(Phi(T)) (X) = sigma(T(X)) (T is an element of L(X), x is an element of X), then Phi(T) = T for all T is an element of L(X). We also investigate several extensions of this result to the case of Phi : L(X) -> L(Y), where X not equal Y. The proof is based on elementary considerations in local spectral theory, together with the following local identity principle: given S, T is an element of L(X) and X is an element of X, if sigma(S+R)(X) = sigma(T+R)(X) for all rank one operators R is an element of L(X), then Sx = Tx.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 13 条
[1]   Operators which do not have the single valued extension property [J].
Aiena, P ;
Monsalve, O .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :435-448
[2]   Single-valued extension property at the points of the approximate point spectrum [J].
Aiena, P ;
Rosas, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :180-188
[3]  
Aiena P., 2004, Math. Proc. R. Ir. Acad, V104A, P17, DOI [10.3318/PRIA.2004.104.1.17, DOI 10.3318/PRIA.2004.104.1.17]
[4]  
Aiena Pietro, 2004, FREDHOLM LOCAL SPECT
[5]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[6]   A note on invertibility preservers on Banach algebras [J].
Bresar, M ;
Fosner, A ;
Semrl, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3833-3837
[7]   Linear maps preserving the spectral radius [J].
Bresar, M ;
Semrl, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) :360-368
[8]   Additive maps on standard operator algebras preserving parts of the spectrum [J].
Cui, JL ;
Hou, JC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (01) :266-278
[9]   SINGLE VALUED EXTENSION PROPERTY ON A BANACH-SPACE [J].
FINCH, JK .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) :61-69
[10]  
GOWERS W. T, 1993, J AM MATH SOC, V6, P851, DOI 10.1090/S0894-0347-1993-1201238-0