The important enzyme in nitrogen (N) assimilation, nitrate reductase (NR), is an inducible enzyme influenced by many external (light, temperature, etc.) and internal (genotype) factors. The efficiency of the N assimilation system may vary with genotype and season. In the present study, the effects of season on NR activity in relation to N accumulation in maize plants were investigated. Six different cultivars of maize, namely Ganga-11, Deccan-103, Histarch (hybrids), Arun, Manjari and Vijay (composites), were sown during the monsoon (88-day crop duration) and in winter (150-day crop duration). In vivo NR activity in the last fully expanded leaf (LFEL). and the N contents of the whole plant and the LFEL were estimated at seven phenological growth stages. Three different states of N metabolism in maize, namely (i) low NR activity per unit leaf area per unit time coinciding with high accumulation of N, (ii) high NR activity coinciding with low N accumulation, and (iii) low NR activity coinciding with low N accumulation, were noted. These results clearly demonstrate that the relationships between N uptake and accumulation parameters change with the season and crop growth stage and are subject to a genotypic influence. Thus it is necessary to evaluate genotypes under similar environments to select a genotype with high N use efficiency. As these relationships are growth dependent. care must be taken to evaluate them at a particular phenological stage rather than on the basis of days after sowing.