A strong invariance principle for the local time difference of a simple symmetric planar random walk

被引:0
作者
Csaki, E
Foldes, A
Revesz, P
机构
[1] MTA Matematika Kutatointezete, H-1364 Budapest, Hungary
[2] CUNY, Dept Math, Staten Isl, NY 10314 USA
[3] Vienna Tech Univ, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
关键词
planar random walk; local time; invariance principle;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let xi(a, n) be the local time at a of the simple symmetric random walk on the plane. Our main result says, that, the difference xi(a, n) - xi(0, n) can be strongly approximated by sigma(a)W(xi((1)) (0, n)) where xi(0, n) and xi((1))(0, n) have the same distribution and the latter is independent from W((.)).
引用
收藏
页码:25 / 39
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1981, PROBABILITY MATH STA
[2]   THE CIRCLE HOMOGENEOUSLY COVERED BY RANDOM-WALK ON Z2 [J].
AUER, P .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :403-407
[3]   ON THE CHARACTER OF CONVERGENCE TO BROWNIAN LOCAL TIME .2. [J].
BORODIN, AN .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (02) :251-277
[4]   BROWNIAN LOCAL TIME APPROXIMATED BY A WIENER SHEET [J].
CSAKI, E ;
CSORGO, M ;
FOLDES, A ;
REVESZ, P .
ANNALS OF PROBABILITY, 1989, 17 (02) :516-537
[5]   ON THE LOCAL TIME PROCESS STANDARDIZED BY THE LOCAL TIME AT ZERO [J].
CSAKI, E ;
FOLDES, A .
ACTA MATHEMATICA HUNGARICA, 1988, 52 (1-2) :175-186
[6]  
CSAKI E, 1992, J THEORET PROBAB, V5, P679, DOI DOI 10.1007/BF01058725
[7]  
CSORGO M, 1985, ACTA SCI MATH, V48, P85
[8]  
DOBRUSHIN RL, 1955, USP MAT NAUK, V10, P139
[9]  
DVORETZKY A, 1951, P 2 BERK S MATH STAT, P353
[10]  
Erdos P., 1960, Acta Math. Acad. Sci. Hung, V11, P137, DOI [DOI 10.1007/BF02020631, 10.1007/BF02020631]