On the Hamilton connectivity of generalized Petersen graphs

被引:19
作者
Alspach, Brian [1 ]
Liu, Jiping [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized Petersen graph; Hamilton-connected; Hamilton-laceable; CYCLES;
D O I
10.1016/j.disc.2008.12.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Hamilton connectivity and Hamilton laceability of generalized Petersen graphs whose internal edges have jump 1, 2 or 3. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:5461 / 5473
页数:13
相关论文
共 11 条
[1]   LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS [J].
ALSPACH, B .
DISCRETE MATHEMATICS, 1989, 78 (1-2) :25-36
[2]   A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02) :307-318
[3]   HAMILTONIAN CYCLES IN GENERALIZED PETERSEN GRAPHS [J].
BANNAI, K .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (02) :181-188
[4]   VARIATIONS ON HAMILTONIAN THEME [J].
BONDY, JA .
CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01) :57-&
[5]   EVERY GENERALIZED PETERSEN GRAPH HAS A TAIT COLORING [J].
CASTAGNA, F ;
PRINS, G .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) :53-&
[6]  
CHEN CC, 1981, LECT NOTES MATH, V884, P23
[7]   GROUPS OF GENERALIZED PETERSEN GRAPHS [J].
FRUCHT, R ;
GRAVER, JE ;
WATKINS, ME .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP) :211-&
[8]  
Holton DA, 1993, The Petersen Graph, DOI 101017/CBO9780511662058
[9]  
NEDALA R, 1995, J GRAPH THEOR, V19, P1
[10]  
Robertson G.N., 1968, THESIS U WATERLOO