Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria

被引:50
作者
Blount, P [1 ]
Sukharev, SI [1 ]
Moe, PC [1 ]
Nagle, SK [1 ]
Kung, C [1 ]
机构
[1] UNIV WISCONSIN,DEPT GENET,MADISON,WI 53706
关键词
Escherichia coli; mechanosensation; mechanosensitive channel; patch-clamp; stretch activated channel;
D O I
10.1016/S0248-4900(97)89832-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Whether it be to sense a touch, arterial pressure, or an osmotic gradient across a cell membrane, essentially all living organisms require the capability of detecting mechanical force. Electrophysiological evidence has suggested that mechanosensitive ion channels play a major role in many systems where mechanical force is detected. But, despite their biological importance, determination of the most basic structural and functional features of mechanosensitive channels has only recently become possible. A gene called mscL, which was isolated from Escherichia coli, was the first gene shown to encode a mechanosensitive channel activity. This channel. directly responds to tension in the membrane; no other proteins are required. MscL appears to be a homohexamer of a 136 amino acid polypeptide that is highly ct helical, contains two transmembrane domains, and has both the amino and carboxyl termini in the cytoplasm. The study of the MscL protein remains, to date, one of the most viable options for understanding the structural and functional characteristics of a mechanosensitive channel.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 58 条
[1]   QUANTITATIVE MEASUREMENTS OF THE PROTON-MOTIVE FORCE AND ITS RELATION TO STEADY-STATE LACTOSE ACCUMULATION IN ESCHERICHIA-COLI [J].
AHMED, S ;
BOOTH, IR .
BIOCHEMICAL JOURNAL, 1981, 200 (03) :573-581
[2]   POLAR LOCALIZATION OF A BACTERIAL CHEMORECEPTOR [J].
ALLEY, MRK ;
MADDOCK, JR ;
SHAPIRO, L .
GENES & DEVELOPMENT, 1992, 6 (05) :825-836
[3]   REQUIREMENT OF THE CARBOXYL TERMINUS OF A BACTERIAL CHEMORECEPTOR FOR ITS TARGETED PROTEOLYSIS [J].
ALLEY, MRK ;
MADDOCK, JR ;
SHAPIRO, L .
SCIENCE, 1993, 259 (5102) :1754-1757
[4]   Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure [J].
Berrier, C ;
Besnard, M ;
Ajouz, B ;
Coulombe, A ;
Ghazi, A .
JOURNAL OF MEMBRANE BIOLOGY, 1996, 151 (02) :175-187
[5]   GADOLINIUM ION INHIBITS LOSS OF METABOLITES INDUCED BY OSMOTIC SHOCK AND LARGE STRETCH-ACTIVATED CHANNELS IN BACTERIA [J].
BERRIER, C ;
COULOMBE, A ;
SZABO, I ;
ZORATTI, M ;
GHAZI, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 206 (02) :559-565
[6]   A PATCH-CLAMP STUDY OF ION CHANNELS OF INNER AND OUTER MEMBRANES AND OF CONTACT ZONES OF ESCHERICHIA-COLI, FUSED INTO GIANT LIPOSOMES - PRESSURE-ACTIVATED CHANNELS ARE LOCALIZED IN THE INNER MEMBRANE [J].
BERRIER, C ;
COULOMBE, A ;
HOUSSIN, C ;
GHAZI, A .
FEBS LETTERS, 1989, 259 (01) :27-32
[7]   PRODUCTION AND ULTRASTRUCTURE OF LYSOZYME AND ETHYLENEDIAMINETETRAACETATE-LYSOZYME SPHEROPLASTS OF ESCHERICHIA COLI [J].
BIRDSELL, DC ;
COTAROBL.EH .
JOURNAL OF BACTERIOLOGY, 1967, 93 (01) :427-+
[8]   Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli [J].
Blount, P ;
Sukharev, SI ;
Moe, PC ;
Schroeder, MJ ;
Guy, HR ;
Kung, C .
EMBO JOURNAL, 1996, 15 (18) :4798-4805
[9]  
BLOUNT P, 1996, EMBO J, V93, P11652
[10]   QUANTITATIVE-ANALYSIS OF PROTON-LINKED TRANSPORT-SYSTEMS - BETA-GALACTOSIDE EXIT IN ESCHERICHIA-COLI [J].
BOOTH, IR ;
HAMILTON, WA .
BIOCHEMICAL JOURNAL, 1980, 188 (02) :467-473