Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy

被引:42
作者
Bychkov, Dmitrii [1 ,2 ]
Linder, Nina [1 ,2 ,3 ]
Tiulpin, Aleksei [4 ,5 ,6 ]
Kuecuekel, Hakan [1 ,2 ]
Lundin, Mikael [1 ]
Nordling, Stig [7 ]
Sihto, Harri [7 ]
Isola, Jorma [8 ]
Lehtimaeki, Tiina [9 ]
Kellokumpu-Lehtinen, Pirkko-Liisa [10 ]
von Smitten, Karl [11 ]
Joensuu, Heikki [2 ,12 ,13 ]
Lundin, Johan [1 ,2 ,14 ]
机构
[1] Univ Helsinki, Nord EMBL Partnership Mol Med, Inst Mol Med Finland FIMM, Helsinki, Finland
[2] iCAN Digital Precis Canc Med Flagship, Helsinki, Finland
[3] Uppsala Univ, Dept Womens & Childrens Hlth, Int Maternal & Child Hlth, Uppsala, Sweden
[4] Univ Oulu, Res Unit Med Imaging, Phys & Technol, Oulu, Finland
[5] Oulu Univ Hosp, Dept Diagnost Radiol, Oulu, Finland
[6] Ailean Technol Oy, Oulu, Finland
[7] Univ Helsinki, Dept Pathol, Medicum, Helsinki, Finland
[8] Univ Tampere, Dept Canc Biol, BioMediTech, Tampere, Finland
[9] Helsinki Univ Hosp, Helsinki, Finland
[10] Tampere Univ Hosp, Dept Oncol, Tampere, Finland
[11] Eira Hosp, Helsinki, Finland
[12] Helsinki Univ Hosp, Dept Oncol, Helsinki, Finland
[13] Univ Helsinki, Helsinki, Finland
[14] Karolinska Inst, Dept Global Publ Hlth, Stockholm, Sweden
关键词
DISTANT RECURRENCE; RISK;
D O I
10.1038/s41598-021-83102-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it is not known whether ML-derived features can predict survival and efficacy of anti-ERBB2 treatment. In this study, we trained a deep learning model with digital images of hematoxylin-eosin (H&E)-stained formalin-fixed primary breast tumor tissue sections, weakly supervised by ERBB2 gene amplification status. The gene amplification was determined by chromogenic in situ hybridization (CISH). The training data comprised digitized tissue microarray (TMA) samples from 1,047 patients. The correlation between the deep learning-predicted ERBB2 status, which we call H&E-ERBB2 score, and distant disease-free survival (DDFS) was investigated on a fully independent test set, which included whole-slide tumor images from 712 patients with trastuzumab treatment status available. The area under the receiver operating characteristic curve (AUC) in predicting gene amplification in the test sets was 0.70 (95% CI, 0.63-0.77) on 354 TMA samples and 0.67 (95% CI, 0.62-0.71) on 712 whole-slide images. Among patients with ERBB2-positive cancer treated with trastuzumab, those with a higher than the median morphology-based H&E-ERBB2 score derived from machine learning had more favorable DDFS than those with a lower score (hazard ratio [HR] 0.37; 95% CI, 0.15-0.93; P=0.034). A high H&E-ERBB2 score was associated with unfavorable survival in patients with ERBB2-negative cancer as determined by CISH. ERBB2-associated morphology correlated with the efficacy of adjuvant anti-ERBB2 treatment and can contribute to treatment-predictive information in breast cancer.
引用
收藏
页数:10
相关论文
共 29 条
  • [1] Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival
    Beck, Andrew H.
    Sangoi, Ankur R.
    Leung, Samuel
    Marinelli, Robert J.
    Nielsen, Torsten O.
    van de Vijver, Marc J.
    West, Robert B.
    van de Rijn, Matt
    Koller, Daphne
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
  • [2] Belharbi Jose, 2019, ARXIV190903354
  • [3] Deep learning based tissue analysis predicts outcome in colorectal cancer
    Bychkov, Dmitrii
    Linder, Nina
    Turkki, Riku
    Nordling, Stig
    Kovanen, Panu E.
    Verrill, Clare
    Walliander, Margarita
    Lundin, Mikael
    Haglund, Caj
    Lundin, Johan
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [5] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [6] Deep learning-based classification of mesothelioma improves prediction of patient outcome
    Courtiol, Pierre
    Maussion, Charles
    Moarii, Matahi
    Pronier, Elodie
    Pilcer, Samuel
    Sefta, Meriem
    Manceron, Pierre
    Toldo, Sylvain
    Zaslavskiy, Mikhail
    Le Stang, Nolwenn
    Girard, Nicolas
    Elemento, Olivier
    Nicholson, Andrew G.
    Blay, Jean-Yves
    Galateau-Salle, Francoise
    Wainrib, Gilles
    Clozel, Thomas
    [J]. NATURE MEDICINE, 2019, 25 (10) : 1519 - +
  • [7] HER2 and Breast Cancer - A Phenomenal Success Story
    Hayes, Daniel F.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (13) : 1284 - 1286
  • [8] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
  • [9] Risk for distant recurrence of breast cancer detected by mammography screening or other methods
    Joensuu, H
    Lehtimäki, T
    Holli, K
    Elomaa, L
    Turpeenniemi-Hujanen, T
    Kataja, V
    Anttila, A
    Lundin, M
    Isola, J
    Lundin, J
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 292 (09): : 1064 - 1073
  • [10] Joensuu H, 2003, CLIN CANCER RES, V9, P923