Design and Analysis of a Scalable and Efficient Quantum Circuit for LWE Matrix Arithmetic

被引:9
作者
Lu, Chao [1 ]
Banerjee, Utsav [2 ]
Basu, Kanad [1 ]
机构
[1] Univ Texas Dallas, Dept Electrial & Comp Engn, Richardson, TX 75083 USA
[2] Indian Inst Sci, Dept Elect Syst Engn, Bengaluru, Karnataka, India
来源
2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022) | 2022年
关键词
Quantum Computing; Quantum Circuit; Learning With Errors (LWE);
D O I
10.1109/ICCD56317.2022.00026
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum computing furnishes exponential speed up over classical computing in specific areas. For example, Shor's algorithm can factor two numbers in a polynomial time complexity. Thus, many encryption algorithms that rely on large number factorization are potentially vulnerable to quantum computers. In order to address this, the National Institute of Standard and Test (NIST) has organized a competition to evaluate several post quantum cryptography (PQC) algorithms, that are secure from the attacks from quantum computers. Several of these lattice-based PQC encryption algorithms are based on Learning With Errors (LWE) computation. Conversely, LWE is the heaviest computation in a classical computer, which incurs significant portion of the latency overhead for the entire encryption algorithm. In this paper, we design an optimized quantum circuit for LWE computation. The proposed quantum circuit does not need any ancillary qubits and scales efficiently and easily if there are more qubits available on a higher qubit quantum computer.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 29 条
[1]  
Alagic G., 2020, 8309 NAT I STAND TEC
[2]  
Alkim E, 2021, FrodoKEM Learning with Errors Key Encapsulation
[3]   Quantum Grover Attack on the Simplified-AES [J].
Almazrooie, Mishal ;
Abdullah, Rosni ;
Samsudin, Azman ;
Mutter, Kussay N. .
PROCEEDINGS OF 2018 7TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2018), 2018, :204-211
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]  
Banerjee U., 2019, IACR Transactions on Cryptographic Hardware and Embedded Systems, P17
[6]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[7]  
2-E
[8]  
Farhi E, 2014, Arxiv, DOI arXiv:1411.4028
[9]   How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits [J].
Gidney, Craig ;
Ekera, Martin .
QUANTUM, 2021, 5
[10]  
Grover L. K., 1996, THEOR COMPUT, P212