Centrifugally Spun SnO2 Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodium-Ion Batteries

被引:25
作者
Lu, Yao [1 ]
Yanilmaz, Meltem [1 ]
Chen, Chen [1 ]
Dirican, Mahmut [1 ]
Ge, Yeqian [1 ]
Zhu, Jiadeng [1 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
anode materials; centrifugal spinning; intercalations; sodium-ion batteries; tin dioxide microfibers; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; LITHIUM-ION; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; TIO2; NANOPARTICLES; CATHODE MATERIAL; CARBON-FIBERS; ANATASE TIO2; TIN OXIDE;
D O I
10.1002/celc.201500367
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
SnO2 microfibers were synthesized by using centrifugal spinning technology and were evaluated as the anode in sodium-ion batteries. The as-prepared SnO2 microfibers are composed of interconnected nanoparticles with small interparticle openings. The 1-demensional fibrous morphology, fine particle size, and open pore structure result in reduced electrochemical impedance and enhanced electrochemical performance. The highest capacity achieved is 567mAhg(-1) at 20mAg(-1). At a much higher current density of 640mAg(-1), the microfiber electrode still retains a high capacity of 158mAhg(-1) after 50 cycles. The SnO2 microfibers also demonstrate good rate performance in a current range of 20-640mAg(-1). The results demonstrate that SnO2 microfibers are a potential anode material candidate for sodium-ion batteries and that centrifugal spinning offers a feasible solution for the large-scale production of fibrous electrode materials.
引用
收藏
页码:1947 / 1956
页数:10
相关论文
共 49 条
[1]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[2]   Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C [J].
Alcántara, R ;
Mateos, JMJ ;
Tirado, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A201-A205
[3]   Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries [J].
Chen, Chen ;
Fu, Kun ;
Lu, Yao ;
Zhu, Jiadeng ;
Xue, Leigang ;
Hu, Yi ;
Zhang, Xiangwu .
RSC ADVANCES, 2015, 5 (39) :30793-30800
[4]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[5]   CHEMICALLY MODIFIED PTFE-CARBON AS A SOLID-STATE OXYGEN SENSOR ELECTRODE MATERIAL [J].
GE, P ;
SIEBERT, E ;
FOULETIER, M .
SOLID STATE IONICS, 1988, 28 :1701-1704
[6]   High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries [J].
Ge, Yeqian ;
Jiang, Han ;
Zhu, Jiadeng ;
Lu, Yao ;
Chen, Chen ;
Hu, Yi ;
Qiu, Yiping ;
Zhang, Xiangwu .
ELECTROCHIMICA ACTA, 2015, 157 :142-148
[7]   Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries [J].
Ge, Yeqian ;
Jiang, Han ;
Fu, Kun ;
Zhang, Changhuan ;
Zhu, Jiadeng ;
Chen, Chen ;
Lu, Yao ;
Qiu, Yiping ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2014, 272 :860-865
[8]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102
[9]   High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries [J].
Hasa, Ivana ;
Buchholz, Daniel ;
Passerini, Stefano ;
Scrosati, Bruno ;
Hassoun, Jusef .
ADVANCED ENERGY MATERIALS, 2014, 4 (15)
[10]   Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries [J].
Jian, Zelang ;
Han, Wenze ;
Lu, Xia ;
Yang, Huaixin ;
Hu, Yong-Sheng ;
Zhou, Jing ;
Zhou, Zhibin ;
Li, Jianqi ;
Chen, Wen ;
Chen, Dongfeng ;
Chen, Liquan .
ADVANCED ENERGY MATERIALS, 2013, 3 (02) :156-160