Multilevel Mixture Cure Models with Random Effects

被引:6
|
作者
Lai, Xin [1 ,2 ]
Yau, Kelvin K. W. [1 ]
机构
[1] City Univ Hong Kong, Dept Management Sci, Hong Kong, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
关键词
Cure model; Failure time data; GLMM; Random effects; Residual maximum likelihood estimation; MIXED-EFFECTS MODELS; SURVIVAL-DATA; REML ESTIMATION; FRAILTY MODEL; IDENTIFIABILITY; INFORMATION; REGRESSION; FRACTION;
D O I
10.1002/bimj.200800222
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper extends the multilevel survival model by allowing the existence of cured fraction in the model. Random effects induced by the multilevel clustering structure are specified in the linear predictors in both hazard function and cured probability parts. Adopting the generalized linear mixed model (GLMM) approach to formulate the problem, parameter estimation is achieved by maximizing a best linear unbiased prediction (BLUP) type log-likelihood at the initial step of estimation, and is then extended to obtain residual maximum likelihood (REML) estimators of the variance component. The proposed multilevel mixture cure model is applied to analyze the (i) child survival study data with multilevel clustering and (ii) chronic granulomatous disease (CGD) data on recurrent infections as illustrations. A simulation study is carried out to evaluate the performance of the REML estimators and assess the accuracy of the standard error estimates.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 50 条
  • [41] Mixture models for clustering multilevel growth trajectories
    Ng, S. K.
    McLachlan, G. J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 43 - 51
  • [42] Multilevel Growth Mixture Models for Classifying Groups
    Palardy, Gregory J.
    Vermunt, Jeroen K.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2010, 35 (05) : 532 - 565
  • [43] Cure fraction estimation from the mixture cure models for grouped survival data
    Yu, BB
    Tiwari, RC
    Cronin, KA
    Feuer, EJ
    STATISTICS IN MEDICINE, 2004, 23 (11) : 1733 - 1747
  • [44] SEMIPARAMETRIC TRANSFORMATION MODELS WITH MULTILEVEL RANDOM EFFECTS FOR CORRELATED DISEASE ONSET IN FAMILIES
    Liang, Baosheng
    Wang, Yuanjia
    Zeng, Donglin
    STATISTICA SINICA, 2019, 29 (04) : 1851 - 1871
  • [45] The Random Effects in Multilevel Models: Getting Them Wrong and Getting Them Right
    Schmidt-Catran, Alexander W.
    Fairbrother, Malcolm
    EUROPEAN SOCIOLOGICAL REVIEW, 2016, 32 (01) : 23 - 38
  • [46] Cure mixture models in breast cancer survival studies
    Gordon, NH
    LIFETIME DATA: MODELS IN RELIABILITY AND SURVIVAL ANALYSIS, 1996, : 107 - 112
  • [47] Mixture Cure Models in Oncology: A Tutorial and Practical Guidance
    Felizzi, Federico
    Paracha, Noman
    Pohlmann, Johannes
    Ray, Joshua
    PHARMACOECONOMICS-OPEN, 2021, 5 (02) : 143 - 155
  • [48] Rejoinder on: Nonparametric estimation in mixture cure models with covariates
    Ana López-Cheda
    Yingwei Peng
    María Amalia Jácome
    TEST, 2023, 32 : 513 - 520
  • [49] Mixture Cure Models in Oncology: A Tutorial and Practical Guidance
    Federico Felizzi
    Noman Paracha
    Johannes Pöhlmann
    Joshua Ray
    PharmacoEconomics - Open, 2021, 5 : 143 - 155
  • [50] On a semiparametric estimation method for AFT mixture cure models
    Van Keilegom, Ingrid
    Parsa, Motahareh
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 4882 - 4915