Multilevel Mixture Cure Models with Random Effects

被引:6
|
作者
Lai, Xin [1 ,2 ]
Yau, Kelvin K. W. [1 ]
机构
[1] City Univ Hong Kong, Dept Management Sci, Hong Kong, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
关键词
Cure model; Failure time data; GLMM; Random effects; Residual maximum likelihood estimation; MIXED-EFFECTS MODELS; SURVIVAL-DATA; REML ESTIMATION; FRAILTY MODEL; IDENTIFIABILITY; INFORMATION; REGRESSION; FRACTION;
D O I
10.1002/bimj.200800222
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper extends the multilevel survival model by allowing the existence of cured fraction in the model. Random effects induced by the multilevel clustering structure are specified in the linear predictors in both hazard function and cured probability parts. Adopting the generalized linear mixed model (GLMM) approach to formulate the problem, parameter estimation is achieved by maximizing a best linear unbiased prediction (BLUP) type log-likelihood at the initial step of estimation, and is then extended to obtain residual maximum likelihood (REML) estimators of the variance component. The proposed multilevel mixture cure model is applied to analyze the (i) child survival study data with multilevel clustering and (ii) chronic granulomatous disease (CGD) data on recurrent infections as illustrations. A simulation study is carried out to evaluate the performance of the REML estimators and assess the accuracy of the standard error estimates.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 50 条
  • [21] Nonlinear Random-Effects Mixture Models for Repeated Measures
    Casey L. Codd
    Robert Cudeck
    Psychometrika, 2014, 79 : 60 - 83
  • [22] Mixture cure rate models with accelerated failures and nonparametric form of covariate effects
    Chen, Tianlei
    Du, Pang
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (01) : 216 - 237
  • [23] Skew random effects in multilevel binomial models: an alternative to nonparametric approach
    Liu, Junfeng
    Dey, Dipak K.
    STATISTICAL MODELLING, 2008, 8 (03) : 221 - 241
  • [24] Nonparametric estimation in mixture cure models with covariates
    Sanchez-Sellero, Cesar
    Gonzalez-Manteiga, Wenceslao
    TEST, 2023, 32 (02) : 510 - 512
  • [25] A penalized likelihood approach for mixture cure models
    Corbiere, Fabien
    Commenges, Daniel
    Taylor, Jeremy M. G.
    Joly, Pierre
    STATISTICS IN MEDICINE, 2009, 28 (03) : 510 - 524
  • [26] On Ignoring the Random Effects Assumption in Multilevel Models: Review, Critique, and Recommendations
    Antonakis, John
    Bastardoz, Nicolas
    Roenkkoe, Mikko
    ORGANIZATIONAL RESEARCH METHODS, 2021, 24 (02) : 443 - 483
  • [27] Mixture cure models for multivariate survival data
    Yu, Binbing
    Peng, Yingwei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1524 - 1532
  • [28] Nonparametric latency estimation for mixture cure models
    Ana López-Cheda
    M. Amalia Jácome
    Ricardo Cao
    TEST, 2017, 26 : 353 - 376
  • [29] Approximate Bayesian inference for mixture cure models
    E. Lázaro
    C. Armero
    V. Gómez-Rubio
    TEST, 2020, 29 : 750 - 767
  • [30] Approximate Bayesian inference for mixture cure models
    Lazaro, E.
    Armero, C.
    Gomez-Rubio, V
    TEST, 2020, 29 (03) : 750 - 767