The complete mitochondrial DNA sequence of the green alga Oltmannsiellopsis viridis:: evolutionary trends of the mitochondrial genome in the Ulvophyceae

被引:32
作者
Pombert, Jean-Francois [1 ]
Beauchamp, Philippe [1 ]
Otis, Christian [1 ]
Lemieux, Claude [1 ]
Turmel, Monique [1 ]
机构
[1] Univ Laval, Dept Biochim & Microbiol, Ste Foy, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
green algae; mitochondrial genome evolution; horizontal DNA transfers; introns; repeated sequences;
D O I
10.1007/s00294-006-0076-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The mitochondrial genome displays a highly plastic architecture in the green algal division comprising the classes Prasinophyceae, Trebouxiophyceae, Ulvophyceae, and Chlorophyceae (Chlorophyta). The compact mitochondrial DNAs (mtDNAs) of Nephroselmis (Prasinophyceae) and Prototheca (Trebouxiophyceae) encode about 60 genes and have been ascribed an 'ancestral' pattern of evolution, whereas those of chlorophycean green algae are much more reduced in gene content and size. Although the mtDNA of the early-diverging ulvophyte Pseudendoclonium contains 57 conserved genes, it differs from 'ancestral' chlorophyte mtDNAs by its unusually large size (96 kb) and long intergenic spacers. To gain insights into the evolutionary trends of mtDNA in the Ulvophyceae, we have determined the complete mtDNA sequence of Oltmannsiellopsis viridis, an ulvophyte belonging to a distinct, early-diverging lineage. This 56,761 by genome harbours 54 conserved genes, numerous repeated sequences, and only three introns. From our comparative analyses with Pseudendoclonium mtDNA, we infer that the mitochondrial genome of the last common ancestor of the two ulvophytes closely resembled that of the trebouxiophyte Prototheca in terms of gene content and gene density. Our results also provide strong evidence for the intracellular, interorganellar transfer of a group I intron and for two distinct events of intercellular, horizontal DNA transfer.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 44 条
[21]   REPuter: the manifold applications of repeat analysis on a genomic scale [J].
Kurtz, S ;
Choudhuri, JV ;
Ohlebusch, E ;
Schleiermacher, C ;
Stoye, J ;
Giegerich, R .
NUCLEIC ACIDS RESEARCH, 2001, 29 (22) :4633-4642
[22]   Mitochondrial genome evolution and the origin of eukaryotes [J].
Lang, BF ;
Gray, MW ;
Burger, G .
ANNUAL REVIEW OF GENETICS, 1999, 33 :351-397
[23]   SEQUENCE OF INTRONS AND FLANKING EXONS IN WILD-TYPE AND BOX3 MUTANTS OF CYTOCHROME-B REVEALS AN INTERLACED SPLICING PROTEIN CODED BY AN INTRON [J].
LAZOWSKA, J ;
JACQ, C ;
SLONIMSKI, PP .
CELL, 1980, 22 (02) :333-348
[24]   Green algae and the origin of land plants [J].
Lewis, LA ;
McCourt, RM .
AMERICAN JOURNAL OF BOTANY, 2004, 91 (10) :1535-1556
[25]   MITOCHONDRIAL-DNA OF CHLAMYDOMONAS-REINHARDTII - THE GENE FOR APOCYTOCHROME-B AND THE COMPLETE FUNCTIONAL MAP OF THE 15.8 KB DNA [J].
MICHAELIS, G ;
VAHRENHOLZ, C ;
PRATJE, E .
MOLECULAR AND GENERAL GENETICS, 1990, 223 (02) :211-216
[26]   COMPARATIVE AND FUNCTIONAL-ANATOMY OF GROUP-II CATALYTIC INTRONS - A REVIEW [J].
MICHEL, F ;
UMESONO, K ;
OZEKI, H .
GENE, 1989, 82 (01) :5-30
[27]   MODELING OF THE 3-DIMENSIONAL ARCHITECTURE OF GROUP-I CATALYTIC INTRONS BASED ON COMPARATIVE SEQUENCE-ANALYSIS [J].
MICHEL, F ;
WESTHOF, E .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 216 (03) :585-610
[28]   Plant genetics - Gene transfer from parasitic to host plants [J].
Mower, JP ;
Stefanovic, S ;
Young, GJ ;
Palmer, JD .
NATURE, 2004, 432 (7014) :165-166
[29]  
Nakayama Takeshi, 1996, Phycological Research, V44, P151, DOI 10.1111/j.1440-1835.1996.tb00044.x
[30]   Short repetitive sequences in green algal mitochondrial genomes: Potential roles in mitochondrial genome evolution [J].
Nedelcu, AM ;
Lee, RW .
MOLECULAR BIOLOGY AND EVOLUTION, 1998, 15 (06) :690-701