STABILITY IN CONDUCTIVITY IMAGING FROM PARTIAL MEASUREMENTS OF ONE INTERIOR CURRENT

被引:7
作者
Montalto, Carlos [1 ]
Tamasan, Alexandru [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Hybrid inverse problems; current density imaging; magnetic resonance; electrical impedance tomography; 1-Laplacian; CURRENT-DENSITY; RECONSTRUCTION;
D O I
10.3934/ipi.2017016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a stability result in the hybrid inverse problem of recovering the electrical conductivity from partial knowledge of one current density field generated inside a body by an imposed boundary voltage. The region of stable reconstruction is well defined by a combination of the exact and perturbed data. This work explains the high resolution and accuracy reconstructions in some existing numerical experiments that use partial interior data.
引用
收藏
页码:339 / 353
页数:15
相关论文
共 33 条
[1]  
ALESSANDRINI G, 1987, ANN SCUOLA NORM SUP, V14, P229
[2]   Global stability for a coupled physics inverse problem [J].
Alessandrini, Giovanni .
INVERSE PROBLEMS, 2014, 30 (07)
[3]  
Bal G., 2013, MATH SCI RES I PUBL, P325
[4]  
Bal G., 2014, Inverse problems and applications, V615 of, P15, DOI [10.1090/conm/615/12289, DOI 10.1090/CONM/615/12289]
[5]   Inverse anisotropic conductivity from internal current densities [J].
Bal, Guillaume ;
Guo, Chenxi ;
Monard, Francois .
INVERSE PROBLEMS, 2014, 30 (02)
[6]   INVERSE DIFFUSION FROM KNOWLEDGE OF POWER DENSITIES [J].
Bal, Guillaume ;
Bonnetier, Eric ;
Monard, Francois ;
Triki, Faouzi .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) :353-375
[7]   Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements [J].
Capdeboscq, Y. ;
Fehrenbach, J. ;
de Gournay, F. ;
Kavian, O. .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04) :1003-1030
[8]   IMPEDANCE-ACOUSTIC TOMOGRAPHY [J].
Gebauer, Bastian ;
Scherzer, Otmar .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (02) :565-576
[9]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[10]  
Hasanov KF, 2004, P ANN INT IEEE EMBS, V26, P1321