Hamilton-Souplet-Zhang's Gradient Estimates for Two Types of Nonlinear Parabolic Equations under the Ricci Flow

被引:8
作者
Huang, Guangyue [1 ]
Ma, Bingqing [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
关键词
HEAT-EQUATION; KERNEL;
D O I
10.1155/2016/2894207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider gradient estimates for two types of nonlinear parabolic equations under the Ricci flow: one is the equation u(t) = Delta u + au log u + bu with a, b being two real constants; the other is u(t) = Delta u + lambda u(alpha) with lambda, alpha being two real constants. By a suitable scaling for the above two equations, we obtain Hamilton-Souplet-Zhang-type gradient estimates.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[2]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[3]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[4]  
Hsu SY, 2011, DIFFER INTEGRAL EQU, V24, P645
[5]   Gradient estimates and Liouville type theorems for a nonlinear elliptic equation [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2015, 105 (05) :491-499
[6]   Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 43 (03) :209-232
[7]   Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2010, 94 (03) :265-275
[8]   Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation [J].
Li, Junfang ;
Xu, Xiangjin .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4456-4491
[9]  
LI JY, 1991, J FUNCT ANAL, V97, P293
[10]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201