High-dimensional sample covariance matrices with Curie-Weiss entries

被引:5
作者
Fleermann, Michael [1 ]
Heiny, Johannes [2 ]
机构
[1] Fernuniv, Fak Math & Informat, Univ Str 1, D-58084 Hagen, Germany
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44801 Bochum, Germany
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2020年 / 17卷 / 02期
关键词
Curie-Weiss; random matrix; Marcenko-Pastur law; semicircle law; high dimension; dependent entries; full correlation; SEMICIRCLE LAW; EIGENVALUES; CONVERGENCE; INDEPENDENCE; LIMIT;
D O I
10.30757/ALEA.v17-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the limiting spectral distribution of sample covariance matrices XXT, where X are p x n random matrices with correlated entries and p/n -> y is an element of [0, infinity). If y > 0, we obtain the Marcenko-Pastur distribution and in the case y = 0 the semicircle distribution after appropriate rescaling. The entries we consider are Curie-Weiss spins, which are correlated random signs, where the degree of the correlation is governed by an inverse temperature beta > 0. The model exhibits a phase transition at beta = 1. The correlation between any two entries is of order O((np)(-1)) for beta is an element of (0, 1), O ((np)(-1/2)) for beta = 1, and for beta > 1 the correlation does not vanish in the limit. In our proofs we use Stieltjes transforms and concentration of random quadratic forms.
引用
收藏
页码:857 / 876
页数:20
相关论文
共 31 条
[31]   A short proof of the Marchenko-Pastur theorem [J].
Yaskov, Pavel .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (03) :319-322