High-dimensional sample covariance matrices with Curie-Weiss entries

被引:5
作者
Fleermann, Michael [1 ]
Heiny, Johannes [2 ]
机构
[1] Fernuniv, Fak Math & Informat, Univ Str 1, D-58084 Hagen, Germany
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44801 Bochum, Germany
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2020年 / 17卷 / 02期
关键词
Curie-Weiss; random matrix; Marcenko-Pastur law; semicircle law; high dimension; dependent entries; full correlation; SEMICIRCLE LAW; EIGENVALUES; CONVERGENCE; INDEPENDENCE; LIMIT;
D O I
10.30757/ALEA.v17-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the limiting spectral distribution of sample covariance matrices XXT, where X are p x n random matrices with correlated entries and p/n -> y is an element of [0, infinity). If y > 0, we obtain the Marcenko-Pastur distribution and in the case y = 0 the semicircle distribution after appropriate rescaling. The entries we consider are Curie-Weiss spins, which are correlated random signs, where the degree of the correlation is governed by an inverse temperature beta > 0. The model exhibits a phase transition at beta = 1. The correlation between any two entries is of order O((np)(-1)) for beta is an element of (0, 1), O ((np)(-1/2)) for beta = 1, and for beta > 1 the correlation does not vanish in the limit. In our proofs we use Stieltjes transforms and concentration of random quadratic forms.
引用
收藏
页码:857 / 876
页数:20
相关论文
共 31 条
[1]   Poisson convergence for the largest eigenvalues of heavy tailed random matrices [J].
Auffinger, Antonio ;
Ben Arous, Gerard ;
Peche, Sandrine .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :589-610
[2]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[3]   CONVERGENCE TO THE SEMICIRCLE LAW [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (02) :863-875
[4]  
Bai ZD, 2008, STAT SINICA, V18, P425
[5]   Marcenko-Pastur law for Kendall's tau [J].
Bandeira, Afonso S. ;
Lodhia, Asad ;
Rigollet, Philippe .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
[6]   TRACY-WIDOM LIMIT FOR KENDALL'S TAU [J].
Bao, Zhigang .
ANNALS OF STATISTICS, 2019, 47 (06) :3504-3532
[7]  
Basrak B., 2020, ARXIV191008511
[8]   TESTING FOR INDEPENDENCE OF LARGE DIMENSIONAL VECTORS [J].
Bodnar, Taras ;
Dette, Holger ;
Parolya, Nestor .
ANNALS OF STATISTICS, 2019, 47 (05) :2977-3008
[9]   Extreme value analysis for the sample autocovariance matrices of heavy-tailed multivariate time series [J].
Davis, Richard A. ;
Heiny, Johannes ;
Mikosch, Thomas ;
Xie, Xiaolei .
EXTREMES, 2016, 19 (03) :517-547
[10]   Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series [J].
Davis, Richard A. ;
Mikosch, Thomas ;
Pfaffel, Oliver .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (03) :767-799