Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

被引:46
作者
Liang, Zhi [1 ]
Hu, Ming [2 ]
机构
[1] Calif State Univ Fresno, Dept Mech Engn, Fresno, CA 93740 USA
[2] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA
关键词
ENERGY-TRANSFER; CONDUCTANCE; TEMPERATURE; INTERFACES; SCATTERING; SURFACE;
D O I
10.1063/1.5027519
中图分类号
O59 [应用物理学];
学科分类号
摘要
Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed. Published by AIP Publishing.
引用
收藏
页数:16
相关论文
共 107 条
[91]  
Swartz E. T., 1987, THESIS
[92]   THERMAL-BOUNDARY RESISTANCE [J].
SWARTZ, ET ;
POHL, RO .
REVIEWS OF MODERN PHYSICS, 1989, 61 (03) :605-668
[93]   Predicting phonon dispersion relations and lifetimes from the spectral energy density [J].
Thomas, John A. ;
Turney, Joseph E. ;
Iutzi, Ryan M. ;
Amon, Cristina H. ;
McGaughey, Alan J. H. .
PHYSICAL REVIEW B, 2010, 81 (08)
[94]   Molecular-Scale Mechanism of Thermal Resistance at the Solid-Liquid Interfaces: Influence of Interaction Parameters Between Solid and Liquid Molecules [J].
Torii, Daichi ;
Ohara, Taku ;
Ishida, Kenji .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (01) :1-9
[95]   Contribution of inter- and intramolecular energy transfers to heat conduction in liquids [J].
Torii, Daichi ;
Nakano, Takeo ;
Ohara, Taku .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (04)
[96]   Lindhard and RPA susceptibility computations in extended momentum space in electron-doped cuprates [J].
Wang, Yung Jui ;
Barbiellini, B. ;
Lin, Hsin ;
Das, Tanmoy ;
Basak, Susmita ;
Mijnarends, P. E. ;
Kaprzyk, S. ;
Markiewicz, R. S. ;
Bansil, A. .
PHYSICAL REVIEW B, 2012, 85 (22)
[97]   Thermal conductance across grain boundaries in diamond from molecular dynamics simulation [J].
Watanabe, Taku ;
Ni, Boris ;
Phillpot, Simon R. ;
Schelling, Patrick K. ;
Keblinski, Pawel .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[98]  
Wu C. L., 1994, APPL PHYS LETT, V64, P3207
[99]   Effect of liquid layering at the liquid-solid interface on thermal transport [J].
Xue, L ;
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (19-20) :4277-4284
[100]   Two regimes of thermal resistance at a liquid-solid interface [J].
Xue, L ;
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (01) :337-339